
 

 

 
Abstract—In this study, a comparative analysis of the approaches 

associated with the use of neural network algorithms for effective 
solution of a complex inverse problem – the problem of identifying 
and determining the individual concentrations of inorganic salts in 
multicomponent aqueous solutions by the spectra of Raman 
scattering of light – is performed. It is shown that application of 
artificial neural networks provides the average accuracy of 
determination of concentration of each salt no worse than 0.025 M. 
The results of comparative analysis of input data compression 
methods are presented. It is demonstrated that use of uniform 
aggregation of input features allows decreasing the error of 
determination of individual concentrations of components by 16-18% 
on the average. 
 

Keywords—Inverse problems, multi-component solutions, neural 
networks, Raman spectroscopy. 

I. INTRODUCTION 

HE Artificial Neural Networks (ANN) demonstrate very 
high efficiency for solution of various problems of 

approximation, prediction, evaluation, classification, pattern 
recognition etc. ANN are used also for solution of inverse 
problems (IP), where their properties, such as training by 
examples, high noise stability, stability to contradictory data 
etc., play a special role [1], [2]. Most often, IP of regression 
type are under consideration – those with continuous output 
(for example, determination of temperature of plasma by its 
proper glow spectrum) [3], [4]. However, more complicated 
situations can take place, when simultaneous solution of 
problems of classification or pattern recognition, i.e. IP with 
discrete output, and traditional IP of regression type for every 
found component, is required. We call this type of IP the 
complex inverse problem. In this study, the elaborated method 
of solution of such complex IP is presented at the example of 
complex IP of identification and determination of individual 
concentrations of salts in multi-component water solution by 
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Raman spectra. 
The problem of determination of salts composition of 

multicomponent solutions is very important for oceanology, 
ecological monitoring, and control of technical and mineral 
waters. Obviously, to solve this problem, a remote method 
which can be implemented in the on-line mode is required. 

Such properties are possessed by the non-contact 
radiometric method of measurement of salinity of the sea 
surface waters, most common in oceanology [5]-[7]. At 
present, however, it does not provide the required accuracy of 
salinity determination. That is mainly due to the difficulties of 
extraction of relatively small changes of thermal radio 
emission caused by variations in salinity, against the 
background of larger signals caused by surface waves. In 
addition, radiometric methods measure the total concentration 
of dissolved salts (salinity) only in subsurface water layer and 
do not allow to solve the problem of identification of 
substances dissolved in water. 

The problem of identification and determination of 
individual concentrations of salts in solution can be solved 
using spectrophotometry, measuring absorption spectra at 
several wavelengths [8]. However, to identify salts, it is 
necessary that the absorption coefficients of the investigated 
substances differ significantly. In addition, this method is 
unsuitable for remote sensing. 

It is very promising to use Raman spectra for express 
remote determination of concentrations of inorganic 
substances dissolved in water. Principle opportunity of using 
Raman spectra for diagnostics of solutions results from high 
sensitivity of their characteristics to types and concentrations 
of salts dissolved in water [9]-[14]. 

In [9], [10], to identify and determine the concentration of 
salts with complex ions, such as NO3

-, SO4
2-, PO4

3-, CO3
2- 

anions, it was suggested to use Raman spectra of these ions in 
the area of 1000 cm-1. In this area, these anions have narrow 
bands produced by valence vibrations of these anions (Fig. 1). 
Anion type can be determined by the position of the 
corresponding band, its concentration by intensity of that 
band. However, this method can be used only for diagnostics 
of salts with complex ions. In natural waters there are much 
less salts with complex anions than, for example, metal 
halides. 
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Fig. 1 The low-frequency region of Raman spectra of aqueous 
solutions of salts with complex anions. (a): 1 – distilled water; 2 –

 KNO3, 1 M; 3 – Li2SO4, 1 M. (b): 1 – distilled water; 2 – KNO3, 1 
M; 3 – KNO3, 3 M 

 
As it was found out in [11]-[14], the position and shape of 

water Raman valence band (2700 - 4000 cm-1, Fig. 2) also 
significantly depends on the type of salt and its concentration 
in the solution. This influence is manifested, for example, in 
the dependence of such spectrum characteristics as the 
position of the valence band maximum, its width, the ratio of 
intensities of high-frequency and low-frequency fields of 
valence band - the parameter 21 = I(2)/I(1), on the salt type 
and its concentration. 

The authors of [15]-[17] elaborated a method of 
determination of concentration of dissolved salts by water 
Raman valence band. In [15], [16], concentration of the single 
salt in the solution was determined using the dependence 
21(С) of water Raman valence band. In [17], [13], two-
parameter inverse problem was solved: the temperature T and 
salinity S of sea water were determined simultaneously using 
the dependence 21(T,S). 
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Fig. 2 Valence Raman bands of water. (a): 1 – distilled water; 2 –
 CsI, 2 M; 3 – NaCl, NH4Br, Li2SO4 – 0.4 M, KNO3 и CsI – 0.6 M. 

(b): 1 – distilled water; 2 – CsI, 1 M; 3 – CsI, 2 M. 
 

However, the increase of IP dimension, for example, the 
attempt to determine the concentrations of three salts 
dissolved in water, reveals that the suggested methods are not 
sufficiently robust and fail to achieve acceptable accuracy of 
measurement of concentrations of three salts. It became 
obvious that it was necessary to pass from the analysis of 
individual spectral parameters to the analysis of the whole 
shape of a spectrum, for example, with the help of ANN. The 
use of ANN allowed the authors of this work to develop a 
method for solution of IP of identification and determination 
of individual concentrations of salts by Raman water valence 
band in three-component solutions [18], [19].  

This paper presents the results of the application of ANN 
for solving multiparameter IP: identification and 
determination of the concentration of each of salt in five-
component aqueous solutions by their Raman spectra. The 
increase of number of search parameters became possible due 
to the fact that ANN performs the analysis of valence bands 
and low-frequency bands of Raman spectra simultaneously. 
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This improves the sensitivity of the method for determination 
the concentration of complex ions significantly  

Intermediate results of the work were presented in [20], 
[21]. In the present study, the previously developed techniques 
are summarized, and the results of the final stage of the 
development of neural network method for solving multi-
parameter IP - identification and determination of the 
concentration of each salt in five-component aqueous 
solutions by their Raman spectra – are presented. 

II. METHODICAL ASPECTS OF USING ANN 

A. ANN Training 

Training of ANN for solution of IP requires a representative 
dataset, i.e. a set of data that would reflect all characteristic 
aspects of behavior of the object. This dataset can be obtained 
in different ways [22]. If an adequate analytical model of 
solution of the direct problem is available, it can be used for 
generation of arrays of data with necessary representativity. 
However, the Raman spectra of aqueous solutions cannot be 
described analytically. Therefore, to solve the pointed IP, 
"experiment-based" and quasi-model approaches were used. 

1) “Experiment-Based” Approach 

The data used for ANN training are obtained in experiment. 
(In this paper, the data are Raman spectra of various solutions 
with different combinations and concentrations of 
components, obtained using laser Raman spectrometer). This 
approach does not require a model to be available, and it 
inherently takes the non-linear properties of the object into 
account. However, obtaining a representative data set can be a 
non-trivial experimental problem. 

2) “Quasi-Model” Approach 

If no adequate physically grounded analytical model of 
solution of the direct problem is available, one can replace it 
by a parametrical quasi-model based on experimental data. 
This model formally describes the dependence of the observed 
data on the sought-for parameters. In the present case, a quasi-
model describes the dependence of intensity in every spectral 
channel on concentrations of components. The simplest quasi-
model is a linear one when it is supposed that the intensity in 
each spectral channel is a linear combination of concentrations 
of the components. To construct more complicated quasi-
models, which can describe the desired dependence better, one 
can use more efficient adaptive methods of model 
construction. 

B. Used Architectures of ANN 

The considered complex IP naturally breaks down into two 
problems – the problem of identification/classification of 
components of the solution, and the problem of determination 
of their individual concentrations. These problems may be 
solved separately [20]. The method applied in this study 
provides simultaneous solution of these two problems, when a 
single ANN is used. The values at the outputs of the ANN are 
treated as estimated concentrations of components. If the value 
at some output is lower than a pre-defined threshold, it is 

considered that the corresponding component is not present in 
the solution. 

The ANN architectures used in this study to solve the 
complex IP were perceptrons with one and three hidden 
layers, trained by error back-propagation method, General 
Regression NN (GRNN) [23] and Group Method of Data 
Handling (GMDH) [24]. To construct the quasi-models, 
perceptrons and GRNN were used. 

C. Criteria of Model Quality Evaluation 

To evaluate the quality of models, four basic criteria were 
used in this study. The following designations will be used: 
y – estimation of the value of an output variable made by the 
model (neural network); d – the desired value of this output 

variable; d – average of the desired output value over the 
whole concerned dataset; N – the number of patterns in the 
concerned dataset. Summation is carried out over all the 
patterns of the dataset for which the criterion is calculated 
(from 1 to N). 

1. Coefficient of Multiple Determination: R2 is calculated 
according to the following formula: 
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This criterion compares the error of the constructed model 

with the error of trivial reference model (the estimate provided 
by this reference model is the mean value of the estimated 
variable over all the patterns of the dataset). When the 
estimate is absolutely accurate, R2 equals 1. If the accuracy of 
the estimate is worse than the accuracy of the trivial model, R2 
is negative. For many kinds of problems, R2 is the most 
substantial universal criterion for evaluation of model quality. 
This criterion is dimensionless. 

2. Root Mean Squared Error (RMSE) is calculated 
according to the following formula: 
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This criterion has the same dimension as the estimated 

variable. In our case (determination of concentration), it is M 
(molarity – quantity of moles of substance per liter of 
solution). 

3. Mean Absolute Error (MAE), calculated according to: 
 

N
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This criterion also has the same dimension as the estimated 

variable. 
4. Mean Relative Error (MRE), calculated according to: 
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This criterion has no dimension and it is usually expressed 

in percent. 
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III. EXPERIMENT 

A. Raman Spectrometer 

All the Raman spectra of aqueous solutions were obtained 
by the Raman spectrometer [20]. Excitation of Raman spectra 
was performed by argon laser with wavelength 488 nm and 
output power 350 mW. In order to remove elastic scattering 
signal, edge-filter was used. It allowed approaching laser line 
to 100 cm-1. Registration of spectra was performed by double 
monochromator (lattice 900 gr/mm, focal length 500 mm) and 
by CCD-camera. Spectra were measured in two spectral 
bands: 200...2300 cm-1 and 2300...4000 cm-1 for each sample. 
Practical resolution of the Raman spectrometer was 2 cm-1. 
The temperature of the sample during the experiment was 
stabilized at 22.0±0.2°C. Spectra were normalized to laser 
power, spectral sensitivity of the detector and the time of 
spectrum accumulation. 

B. Preparation of Solutions 

The objects of research were aqueous solutions of the salts 
NaCl, NH4Br, Li2SO4, KNO3, CsI. These salts are present in 
natural waters at significant concentrations. Concentration of 
every salt in the solutions changed from 0 to 2.5 M with 
increment 0.2-0.25 M. The range of concentrations was 
chosen according to the following considerations. Normal 
salinity of ocean water 35‰ corresponds to concentration 0.5 
M of the most widespread salt NaCl. In mineral waters, 
concentration of certain salts can reach 1 M, in waste waters – 
up to 1-2 M. 

To prepare solutions, bidistilled water and analytically pure 
reagents were used. 

C. Obtaining Experimental Datasets for ANN Training 

As it was pointed above, each of the two bands of Raman 
spectrum was recorded in 1024 spectral channels, in the 
wavenumber range 200-2300 cm-1 for the low-frequency band 
and 2300-4000 cm-1 for the valence band. For further 
processing, more narrow informative ranges were extracted: 
766 channels in the range 281-1831 cm-1 for the low-
frequency band (Fig. 1) and 769 channels in the range 2700-
3900 cm-1 for the valence band (Fig. 2). 

For each of the bands separately, the pedestal produced by 
elastic scattering in the cuvette with sample, was subtracted. 
Then the spectra were normalized to the area of the valence 
band in the pointed region. 

The obtained data array (1535 features, 9144 samples) was 
randomly divided into training set (for ANN training), test set 
(used to prevent overtraining), and examination set (for out-of-
sample testing) in the ratio of 70:20:10. All the results 
presented below are for the examination set. The results on all 
the three sets were close, confirming sufficient data 
representativity. 

IV. RESULTS AND DISCUSSION  

A. Results of IP Solution, “Experiment-Based” Approach 

The "experiment-based" approach to ANN solving of the IP 
was as follows. The inputs of ANN were fed with all the 1535 

features chosen according to the routine described above. Each 
feature separately was normalized into 0…1 range over the 
whole data array. 

The ANN had five outputs according to the maximum 
number of components in a solution. Each output 
corresponded to one of the considered salts, and its desired 
value corresponded to the concentration of this salt in the 
solution. 

Three models were used to solve the considered IP: 
perceptrons with three hidden layers, GRNN and GMDH. The 
results (MAE on examination set, M) are presented in Table I. 

 
TABLE I 

COMPARISON OF THE RESULTS OF DETERMINATION OF SALTS 

CONCENTRATIONS BY RAMAN SPECTRA IN MULTI-COMPONENT SOLUTIONS 

(MAE ON EXAMINATION SET, M) 

Salt Perceptron GRNN GMDH 
NaCl 0.029 0.102 0.059 

NH4Br 0.024 0.047 0.046 

Li2SO4 0.020 0.064 0.032 

KNO3 0.019 0.058 0.033 

CsI 0.023 0.050 0.046 

 

As can be seen from Table I, the best results were 
demonstrated by perceptron with three hidden layers. The 
hidden layers contained 40, 20 and 10 neurons. Linear 
activation function was used in the output layer, and logistic 
activation function was used in the hidden layers. The 
following values of training parameters were used: learning 
rate – 0.01; moment – 0.5; stop training criterion – 1000 
epochs after minimum of error on test dataset. Statistical 
results of determination of salts concentrations with help of 
perceptron with three hidden layers are presented in Table II. 

 
TABLE II 

STATISTICAL RESULTS OF DETERMINATION OF SALTS CONCENTRATIONS IN 

MULTI-COMPONENT SOLUTIONS BY RAMAN SPECTRA USING PERCEPTRON 

WITH THREE HIDDEN LAYERS (ON EXAMINATION SET) 

Salt R2 RMSE, М MAE, М MRE, % 

NaCl 0.990 0.041 0.029 9.2 

NH4Br 0.993 0.036 0.024 5.8 

Li2SO4 0.996 0.029 0.020 5.6 

KNO3 0.996 0.031 0.019 4.3 

CsI 0.994 0.036 0.023 5.9 

B. Results of IP Solution, “Quasi-Model” Approach 

One of the main reasons causing decrease of accuracy of 
solution of this IP using the “experiment-based” approach is 
the unfavorable ratio of the number of input variables of the 
problem (1535) and the number of patterns in the training set 
(8229 in training and test sets together). One can overcome it 
in one of two ways: by further reduction of the number of 
input variables (this way will be considered in this study 
further) or by increasing the number of patterns. When 
additional experiments cannot be conducted, one can try to get 
additional patterns by spectra interpolation using quasi-models 
– parametrical or adaptive models of solution of the direct 
problem (see II А). In our case, this is the model of 
dependence of intensity in each channel of the spectrum on 
concentrations of the components in the solution. However, if 
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a quasi-model is not adequate enough, using such quasi-model 
approach can lead not to improvement but to degradation of 
the quality of solution of the IP. In particular, for this reason, a 
linear quasi-model is unsuitable for modeling of multi-
component mixtures, in which non-linear interaction of 
components takes place [18]. 

In this study, two types of quasi-models were considered: 
based on perceptron and based on GRNN. To evaluate the 
applicability of the quasi-model approach for solution of this 
IP, it was necessary first to choose the best of the constructed 
quasi-models (i.e. the quasi-model providing the smallest error 
of solution of the direct problem on the examination set). 

In Table III, statistics, their minimal, maximal and average 
values calculated over all 1535 modeled channels are 
presented for quasi-models based on perceptron and on 
GRNN. From Table III, one can see that average statistics are 
close, so at this stage there was no reason to prefer either of 
these two quasi-models. 

 
TABLE III 

THE STATISTICS OF CONSTRUCTED QUASI-MODELS BASED ON PERCEPTRON 

AND ON GRNN (ON THE EXAMINATION SET) 

Criterion, 
model 

R2,  
perceptron 

R2,  
GRNN 

MRE, %,  
perceptron 

MRE, %, 
GRNN 

average  0.933 0.933 9.9 7.1 

RMSE  0.048 0.041 27.0 11.6 

min 0.681 0.768 0.5 0.4 

max 0.983 0.974 272.9 75.0 

 
To create the quasi-model datasets on the base of 

experimental spectra, the spectra of solutions with 
concentrations corresponding to a grid with 0.15 M increment 
for all salts were calculated. Only spectra with total 
concentration of salts less than 2.5 M were considered. There 
were 53130 such spectra with different concentrations of salts, 
i.e. more than 6 times as much as experimental spectra with 
different concentrations. The obtained array of 53130 quasi-
model spectra was randomly divided into training, test, and 
examination datasets in the 70:20:10 ratio. 

After the division of the array of quasi-model spectra, the 
thus obtained training and test sets were supplemented with 
training and test datasets from the experimental array. The 
examination datasets were left separate. Thus, the following 
datasets were used for the quasi-model approach: training set 
(43593 patterns), test set (12454 patterns), examination quasi-
model set (5313 patterns) and examination experimental set 
(914 patterns). Two such complete sets have been obtained: 
one by calculation of model spectra with the quasi-model 
based on perceptron, the other one – with the quasi model 
based on GRNN. The thus obtained training sets were used to 
train identical perceptrons, with architecture and training 
parameters identical to those used to solve the IP within the 
"experiment-based" approach. 

Table IV displays comparison of the results obtained within 
the "experiment-based" approach on the examination 
(experimental examination) dataset, with the results obtained 
within the quasi-model approach on quasi-model examination 
dataset and on experimental examination dataset, for two 

kinds of quasi-model (based on perceptron and on GRNN). 
 

TABLE IV 
SOME STATISTICS FOR ANN DETERMINATION OF CONCENTRATIONS OF SALTS 

IN MULTI-COMPONENT SOLUTIONS BY RAMAN SPECTRA  
WITHIN THE "EXPERIMENT-BASED" AND “QUASI-MODEL” APPROACHES 

Approach
Dataset 

EXP 
EE 

QMP 
EE 

QMGR 
EE 

QMP 
QE 

QMGR 
QE 

R2 

NaCl 0.990 0.969 0.980 0.989 0.990 
NH4Br 0.993 0.985 0.986 0.995 0.992 
Li2SO4 0.996 0.983 0.992 0.990 0.991 
KNO3 0.996 0.986 0.991 0.991 0.991 
CsI 0.994 0.987 0.989 0.996 0.992 

MAE, M 
NaCl 0.029 0.050 0.042 0.030 0.029 
NH4Br 0.024 0.037 0.034 0.021 0.025 
Li2SO4 0.020 0.041 0.029 0.027 0.027 
KNO3 0.019 0.035 0.029 0.028 0.027 
CsI 0.023 0.037 0.031 0.019 0.025 

MRE, % 
NaCl 9.2 17.4 12.5 10.4 11.3 
NH4Br 5.8 9.3 8.8 7.2 9.5 
Li2SO4 5.6 10.4 7.7 8.6 9.5 
KNO3 4.3 8.2 6.8 8.9 9.5 
CsI 5.9 9.3 7.5 6.2 9.1 

Notation for the datasets: EE – experimental examination, QE – quasi-
model examination. Notation for the approaches: Exp – "experiment-based" 
approach, QMP and QMGR – quasi-model approach with quasi-model based 
on perceptron and GRNN, respectively. 

 
The presented results allow making the following 

conclusions. 
1. The quasi-model based on GRNN provided the results on 

the experimental examination dataset that outperformed 
the results provided by the quasi-model based on 
perceptron. 

2. The results obtained within the quasi-model approach on 
the quasi-model examination dataset, are comparable to 
those obtained within the "experiment-based" approach 
on the experimental examination set, sometimes 
outperforming them. This is the manifestation of higher 
representativity of datasets in the quasi-model approach. 

3. The quasi-model approach failed to meet expectations 
compared to the "experiment-based" approach. In all 
cases, the results on the experimental examination dataset, 
obtained within the quasi-model approach, turned out to 
be worse or significantly worse than the results obtained 
within the "experiment-based" approach. This is an 
evidence of low adequateness of the quasi-models used. 

C. Methods of Input Data Compression, “Experiment-
Based” Approach 

To increase the accuracy of solving IP (that is the accuracy 
of determination of individual concentrations of salts) by 
reducing the dimension of space of input features (see IV (B)), 
several methods of input data compression were used: 
 Selection by the absolute value of standard deviation 

(StD) - selection of input features based on the value of 
StD of intensity in each channel, as StD is proportional to 
the entropy and therefore to the volume of information 
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that each channel brings. The 704 features selected 
corresponded to channels with StD exceeding some 
threshold value. 

 Selection by GMDH [24]. The subsets of the whole set of 
features, which are the most significant ones for 
determination of concentration of each salt, were selected 
with the help of Group Method of Data Handling. Union 
of such subsets for the 5 salts gave 314 features. 

 Selection by the values of cross-correlation (CC) and 
cross-entropy (CE). The input features for which CC 
exceeded the sum of average CC and its StD were 
selected. This procedure was repeated for each output and 
for CE instead of CC. The association of the thus obtained 
10 sets of input features gave 1134 inputs, which did not 
include some of the 704 input features selected by the 
value of StD. 

 Aggregation by channels. That is creation of new features 
by summation of intensity values over several adjacent 
channels of a spectrum. Several variants of uniform 
aggregation were tested, with different number of 
channels aggregated into each single feature – from 8 to 
32. The values given in Table V were obtained for 
optimal uniform aggregation, by each 12 channels. 

The results obtained by the methods listed above are 
presented in Table V. 

 
TABLE V 

MEAN ABSOLUTE ERROR OF DETERMINATION OF CONCENTRATIONS OF SALTS 

IN 5-COMPONENT SOLUTIONS (M, ON THE EXAMINATION DATA SET)  
WITHIN THE “EXPERIMENT-BASED” APPROACH, WITH DIFFERENT DATA 

COMPRESSION METHODS 

INITIAL DIMENSIONALITY OF THE INPUT DATA: 1535 
Method of 
compression 

Selection  
by StD 

Selection 
by GMDH 

Selection 
by CC, CE 

Uniform 
aggregation 

Number of 
inputs after 
compression 

704 314 1134 192 

NaCl 0.029 0.031 0.028 0.024 

NH4Br 0.024 0.025 0.022 0.020 

Li2SO4 0.019 0.018 0.019 0.016 

KNO3 0.017 0.018 0.018 0.016 

CsI 0.023 0.023 0.024 0.020 

 

It can be seen that aggregation is the most effective method 
of input data compression. Use of aggregation of input 
features provided decreasing the error of determination of 
concentrations of salts on the average by 16%. In particular, 
this means that to solve the desired IP, one can use much less 
expensive experimental equipment with spectral resolution 8-
12 fold worse than that of the equipment used in this study 
(i.e., equipment with resolution about 20 cm-1 would be 
sufficient). 

V. CONCLUSIONS 

1. Unique experimental material has been obtained. This 
material is the array of Raman spectra (in the frequency 
range from 200 cm-1 to 4000 cm-1) of water solutions of 
inorganic salts (NaCl, NH4Br, Li2SO4, KNO3, CsI) in the 
range of total concentrations from 0 to 2.5 M (mole per 

liter of solution). The array includes 8695 spectra for 
4268 solutions with various concentrations of salts. 

2. The complex IP of identification of salts and 
determination of their individual concentrations in 5-
component aqueous solution by Raman spectra was 
solved using perceptron with three hidden layers, within 
"experiment-based" and “quasi-model” approaches. The 
"experiment-based" approach provides the maximum 
precision: the mean absolute error for different salts was 
from 0.019 to 0.029 M in the concentration range from 0 
to 2.5 M. 

3. The “quasi-model” approach failed to meet expectations 
compared to the “experiment-based” approach. In all 
cases, the results on the experimental examination dataset, 
obtained within the “quasi-model” approach, turned out to 
be worse or significantly worse than the results obtained 
within the “experiment-based” approach. This is an 
evidence of low adequateness of the quasi-models used. 

4. The comparative analysis of input data compression 
methods was performed. It was demonstrated that use of 
uniform aggregation of input features by each 12 channels 
allows decreasing the error of determination of individual 
concentrations of components by 16-18% on the average. 
This means that to solve the studied IP, one can use much 
less expensive experimental equipment with spectral 
resolution 8-12 fold worse than that of the equipment used 
in this study (i.e., equipment with resolution about 20 cm-

1 would be sufficient). 
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