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Abstract

 

—The characteristic features of the valence Raman band of water in the solutions of electrolytes are
revealed. These features allow the noncontact recognition of the type of salt and the determination of its con-
centration in aqueous solutions using artificial neural networks.
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INTRODUCTION
The interaction of water molecules with inorganic

compounds manifests itself as a variation in the
vibrational characteristics of the bound water mole-
cules [1–5]. These variations can be detected with
the laser Raman scattering spectroscopy (RS). Many
authors [1–5] study the most intense valence Raman
band of water. This band was used in [4, 5] to solve the
RS inverse problem lying in the determination of the
concentration of specific salt in aqueous solution. From
the theoretical and practical points of view, it is expedi-
ent to find specific features in the characteristics of the
water Raman spectra related to each salt. Thus, we can
formulate the problem of the noncontact identification
of various salts and the determination of their partial
concentrations in multicomponent aqueous solutions.
This problem can be solved due to the fact that different
ions exhibit different interaction with water molecules
[5, 6].

This work is devoted to the application of artificial
neural networks (ANNs) [7] for the precise analysis of
Raman spectra and the solution of the RS inverse prob-
lem. In the case under study, the application of ANNs
makes it possible to recognize the type of the dissolved
salt and to increase the sensitivity of the method in the
determination of the impurity concentration in water.
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anions in the entire range of solubility (at a temperature
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C) serve as the objects under study. For the
Raman excitation, we use an argon-ion laser with the
wavelength 

 

λ

 

 = 488 nm and a power of 350 mW. The
Raman spectra of the valence band are recorded with an

NH4
+

 

optical multichannel analyzer. The width of the spectra
is 70 nm, and the spectral resolution is 0.14 nm/chan-
nel. Figure 1 demonstrates the valence Raman bands of
water for the solutions of the NaI and NH

 

4

 

F salts. The
experimental data from [1–5] show that an increase in
the salt concentration in water leads to an increase
(decrease) in the intensity in the high-frequency (low-
frequency) region of the valence band, so that the max-
imum of the band shifts towards higher frequencies and
the half width of the band decreases (NaI in Fig. 1).

Specific features of the valence Raman band of
water related to a variation in the ion concentration and
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observed in the solutions of fluorides and ammonium

salts (Fig. 1) are due to individual features of the 
and F

 

–

 

 ions [4, 5].

Figure 2 demonstrates the Raman spectra of water
for the solutions of various potassium salts with equal
concentrations. It is seen that the Raman intensity of
water in the solutions depends on both the salt concen-
tration and type. The results from [1–5] show that the
effect of anions on the water Raman band is signifi-
cantly stronger than the effect of cations. The effect of
ions on the Raman spectrum can be ordered in the fol-
lowing way: Cl

 

–

 

 < Br

 

–

 

 < I

 

–

 

 (Fig. 2). This series is in
agreement with the ion hydration theory [4–6]. A simi-
lar series of the cation effect on the valence Raman
band is missing, since the effect is insignificant.

Note proposals from [4, 5] on the determination of
concentration C of the known salt in a one-component
solution based on the concentration dependence of the
valence Raman band of water. Parameter 

 

χ

 

 equal to the

NH4
+

 

intensity ratio of the high-frequency (

 

ν

 

hf

 

) and low-fre-
quency (

 

ν

 

lf

 

) components of the band serves as a quanti-
tative characteristic of variations in the valence Raman
band. The 

 

ν

 

hf

 

 and 

 

ν

 

lf

 

 frequencies are chosen using the
critical points of the first derivative for the valence
Raman band of distilled water and are fixed. Using the
calibration curves 

 

χ

 

(C), which are close to linear for
each salt under study [4, 5], one can determine the salt
concentration in a one-component solution. For this
method, the accuracy of the concentration measure-
ments is 0.1–0.2 M [4, 5].

The differences in the effect of different salts and
their concentrations on the valence Raman band of
water make it possible to develop a method for the iden-
tification of salts based on their Raman spectra using
ANN [7]. We employ ANN to solve a complex problem
lying in the determination of the type of dissolved salt
and the measurement of its concentration in one-, two-,
and three-component aqueous solutions.

RESULTS

 

1. One-Component Aqueous Solutions

 

At the first stage of the inverse problem, we solve a
classification problem to determine which of the five
salts (NaI, NaCl, KCl, KBr, and KI) is present in the
solution based on the valence Raman band. The corre-
sponding ANN has five outputs for the salts under
study. In the training of the network, the value of the
first output corresponds to the salt present in the solu-
tion, whereas the remaining four outputs equal zero.

In accordance with the conventional ANN proce-
dure, all of the experimental spectra (574 spectra) are
divided into training (409), test (109), and examination
(57) sets. A three-layer perceptron architecture is used.

The results on the salt classification are presented in
Table 1. In the cells of the central part of Table 1, we
present the distribution of recognized spectra (network
outputs) with respect to salts. In the last column, we
present the fraction of true results (in percents) for each
salt.

Note the following facts. First, four salts (NaI, KI,
NaCl, and KCl) are well identified with a probability of
80–100%, whereas the fifth salt (KBr) is often errone-
ously classified as KCl. This is due to the fact that the
effect of the I

 

–

 

 ions on the valence Raman band of water
is significantly stronger than the effect of the Cl

 

–

 

 and
Br

 

–

 

 ions (see above). Second, the results on the salt rec-
ognition for the three data sets (training, test, and exam-
ination) are close to each other, which indicates the rep-
resentative character of the sets.

After the salt identification, we determine its con-
centration at the second stage. For this purpose, we
employ five neural networks (one network per one salt).
Each ANN has a single output, which corresponds to
the salt concentration. We compare the results obtained
with the five-layer perceptron using the dependence
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 Valence Raman bands of water for the solutions of
potassium salts at a concentration of 3.2 M: (

 

1

 

) KI, (
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) KBr,
and (
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) KCl.

 

Table 1.  

 

Results on the salt classification for the examina-
tion set

Real
Recognized as a class Percentage 

of truthNaI NaCl KCl KBr KI

NaI 9 0 0 0 0 100

NaCl 1 4 0 0 0 80

KCl 0 0 12 0 1 92

KBr 0 0 10 4 0 29

KI 0 0 0 0 16 100
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χ

 

(C) and the group method of data handling (GMDH)
[8]. GMDH is a simulation algorithm that creates a
polynomial model of the dependence under study (the
dependence of the Raman intensities at the spectral fre-
quencies on the salt concentration). Table 2 shows the
errors of the salt concentration measurement with the
above methods. Note that the five-layer perceptron is
superior to the 

 

χ

 

(C) dependence and GMDH.

 

2. Two-Component Aqueous Solutions

 

To determine the concentrations of two salts in a sin-
gle aqueous solution with ANN based on the valence
Raman band of water, we employ two (experimental
and quasi-model) approaches [9].

In the first (experimental) approach, all of the exper-
imental Raman spectra of water in the two- and one-
component solutions are used for the ANN learning.
The sets are low-representative, since the accumulation
of large experimental data arrays is a difficult task. In
this approach, the learning of the neural network on the

1

 

experimental curves takes into account various interac-
tions in the solutions. In addition, the network is trained
on real apparatus noise.

In the second (quasi-model) approach [9], the model
spectra are used to obtain representative training and
test sets. The model spectra represent numerically sim-
ulated spectra of the two-component solution that con-
tain the spectra of the one-component solutions with
regard to the salt concentrations. Evidently, this
approach makes it possible to obtain a sufficient num-
ber of curves. However, the accuracy of the solution to
the inverse problem strongly depends on the error of the
model that is used for the calculation of the curves. In
addition, the network is not trained on real noise. Thus,
it is expedient to compare the two approaches and to
reveal their advantages.

We study two two-component solutions: NaCl +
NaF for the concentration range 0–1 M (for each salt)
and KI + KCl for the concentration range 0–1.5 M (for
each salt).

 

2.1. NaCl + NaF solution

 

In this solution, one component (NaCl) significantly
affects the valence Raman band of water, whereas the
other component (NaF) weakly affects this band. To
demonstrate this difference, we present (Fig. 3) the
valence Raman bands of distilled water and water in the
NaCl and NaF solutions with concentrations of 1 M.

To analyze the two-component (NaCl + NaF) solu-
tion using the ANN, we employ the experimental
approach. All of the experimental Raman spectra of
water for the two-component and one-component solu-
tions of NaCl and NaF (386 spectra) are arbitrarily
divided into three sets: training, test, and examination
(310, 56, and 20 spectra, respectively).

At the first stage, we solve two inverse one-parame-
ter problems on the determination of the concentrations
of each component with neglect of the effect of the
other component on the shape of the valence Raman
band of water. The experimental curves of the one- and
two-component solutions are used for learning of the
neural network that has a single output, whose value
corresponds to the concentration of either NaCl or NaF.
We perform the training of several ANN architectures:
three- and five-layer perceptrons, generalized regres-
sion neural network (GRNN) with the sequential and
genetic search for the smoothing parameter [10], and
Ward network (three-layer perceptron with various
activation functions).

Table 3 shows the results obtained for both one-
parameter inverse problems. It is seen that GRNN pro-
vides the best accuracy in the determination of the NaCl
concentration in the two-component solution with
neglect of the effect of the NaF salt on the valence
Raman band of water. The Ward network makes it pos-
sible to accurately determine the NaF concentration in

2
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Table 2.  

 

Mean absolute errors for the determination of salt
concentrations with various methods

Salt

Mean absolute error, M

five-layer
perceptron

dependence 

 

χ

 

12

 

 (C) GMDH

NaI 0.08 0.10 0.19

NaCl 0.07 0.12 0.22

KCl 0.09 0.10 0.10

KBr 0.06 0.10 0.06

KI 0.06 0.13 0.14
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Fig. 3.

 

 Valence Raman bands of distilled water and water in
the solutions of NaCl and NaF.
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the two-component solution with neglect of the effect
of the NaCl salt on the valence Raman band of water.

To simultaneously determine the concentrations of
both salts (NaCl and NaF) in the solution based on the
valence Raman band of water, we use a two-output
ANN. The output values correspond to the concentra-
tions of the first and second salts. We perform the learn-
ing of the following ANN architectures: three- and five-
layer perceptrons, GRNN with the sequential and
genetic search for the parameters, and Ward network
(three-layer perceptron with various activation func-
tions). The results obtained for this two-parameter
problem are also presented in Table 3. It is seen that
GRNN with both methods for the search for the
smoothing parameter provides the highest accuracy.
Using GRNN, we can simultaneously determine the
NaCl and NaF concentrations in the two-component
solution with errors of 0.05 and 0.13 M, respectively. In
any case, the accuracy for the NaF salt is lower than the
accuracy for the NaCl salt, since fluorides weakly (in
comparison with chlorides) affect the shape of the
valence Raman band of water.

 

2.2. KI + KCl solution

 

In this solution, both components strongly affect the
shape of the valence Raman band of water (Fig. 4). It is
seen that the effect of potassium iodide on the valence
Raman band is stronger than the effect of potassium
chloride.

To realize the experimental approach, we randomly
divide the experimental Raman spectra of water in the
KCl and KI solutions (131 spectra) into training, test,
and examinations sets (92, 26, and 13 spectra, respec-
tively). Two ANN outputs correspond to the concentra-
tions of the first and second salts. Evidently, a relatively
high accuracy of these parameters indicates that the
neural network well knows the characteristic features
of both components of the solutions.

The best results in the solution of this problem are
obtained with the five-layer perceptron with 32, 16, and
8 neurons in the hidden layers. The experimental
approach makes it possible to determine the salt con-
centration in the two-component solution with accura-
cies of 0.07 and 0.24 M for KI and KCl, respectively.
Obviously, the KI salt, whose effect on the shape of the
Raman spectrum of water is stronger, is better identi-
fied with the solution to the inverse problem.

To simulate the Raman spectra of water for the two-
component solution of the KI and KCl salts, we employ
19 experimental Raman spectra of the KI solution in the
concentration range 0.2–3.75 M and 22 spectra of the
KCl solution in the concentration range 0.1–3.5 M. We
numerically simulate 463 Raman spectra of water in the
two-component solution for the concentration range 0–
1.5 M on the assumption on the additive effect of salts
on water molecules.

2

1

1

 

All of the calculated curves are randomly distributed
between the training, test, and examination sets (325,
92, and 46 spectra, respectively). To solve the problem,
we employ the three-layer perceptron. It is demon-
strated that the quasi-model approach enables one to
determine the salt concentration in the two-component
solution based on the simulated Raman spectra of water
with accuracies of 0.01 and 0.02 M for KI and KCl,
respectively. This high accuracy results from the fact
that we can simulate a large number of the Raman spec-
tra of water and, hence, significantly increase the repre-
sentativity of the training and test sets for the network
learning when the additivity assumption is well satis-
fied. As in the previous case, the concentration accuracy
depends on the strength of the effect of salt on the shape
of the valence Raman band of water.

1

3

 

Table 3.  

 

Mean absolute errors for the concentrations of the
NaCl and NaF salts in solutions

ANN architecture

One-parame-
ter problem

Two-parame-
ter problem

NaCl NaF NaCl NaF

Three-layer perceptron
(8 neurons)

0.10 0.13 0.08 0.13

Three-layer perceptron
(64 neurons)

0.08 0.15 0.10 0.14

Five-layer perceptron 0.10 0.13 0.09 0.13

GRNN with the sequential 
search for parameters

0.06 0.14 0.05 0.14

GRNN with the genetic 
search for parameters

0.06 0.15 0.06 0.13

Ward network 0.09 0.1 0.08 0.13

1

1

1

 

0.002

0
31002800

Wave number, cm

 

–1

 

Intensity, rel. units
0.010

3400 3700

0.006

0.004

0.008

KI, 1 M

KCl, 1 M

distillate

 

Fig. 4.

 

 Valence Raman bands of distilled water and water in
the solutions of KCl and KI.
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It was demonstrated that, when the simulated curves
are used, the accuracy with which the concentrations
are determined from the real Raman spectra depends on
the error of the calculation model. To verify this state-
ment (the main assumption on the additive effect of two
salts on the shape of the valence Raman band of water
at concentrations of up to 1.5 M) we supply an exami-
nation set that consists of the experimental Raman
spectra of water to the neural network that is trained on
the simulated spectra. The results of this test show that
the quasi-model neural network determines the KI and
KCl concentrations in the two-component solution
using the real Raman spectra with accuracies of 0.17
and 0.26 M, respectively. The comparison of this result
with the result of the experimental approach shows the
validity of the assumption on the additive effect of two

salts in the two-component solution on the valence
Raman band of water at a salt concentration of no
greater than 1.5 M.

 

3. Three-Component Aqueous Solutions

 

We simultaneously determine the salt concentra-
tions in three-component solutions (i.e., we solve the
three-parameter inverse problem) using ANN. We
employ the NaCl, KI, and NH

 

4

 

Br solutions to prepare
mixtures in the concentration range 0–2.4 M with a
concentration step of 0.4 M. The salts under study dif-
ferently affect the shape of the valence Raman band of
water (Fig. 5). Potassium iodide provides the strongest
effect. As was mentioned, the high-frequency shift of
the band is virtually absent in the presence of ammo-
nium salts.

To simultaneously determine the concentrations of
the components, we use various architectures of the
three-output ANNs, so that each output corresponds to
a single salt concentration, and employ the experimen-
tal approach. All of the experimental spectra (320 spec-
tra) are randomly divided into the training, test, and
examination sets (320, 59, and 20 spectra, respec-
tively). Table 4 demonstrates the results on the salt con-
centrations in the three-component mixture obtained
with the ANN. It is seen that the best concentration
accuracy is reached with the five-layer perceptron. The
error is lower for the salts with a stronger or more spe-
cific effect on the valence Raman band of water. In the
case under study, potassium iodide provides the stron-
gest increase in the intensity of the high-frequency
component of the water Raman band and the high-fre-
quency shift of this band whereas the presence of
ammonium bromide leads to an increase in the intensity
of the low-frequency component almost in the absence
of the shift of the maximum.

The concentration errors obtained for the three-
component solution are slightly worse than the concen-
tration errors for the two-component solution, since (i)
the inverse problem involves three (rather than two)
desired parameters and (ii) the concentrations of the
three components range from 0 to 2.4 M and the con-
centration step for each salt is 0.4 M, while the concen-
tration ranges are 0–1 and 0–1.5 M and the concentra-
tion steps are 0.1 M for the two-component solutions. It
follows from the above data on the number of spectra in
each ANN set that the data representativities in the
ANN sets used to solve the two- and three-parameter
problems are almost equal. Nevertheless, the three-
parameter inverse problem is more complicated and the
representativity of the sets used for its solution must be
higher than that for the two-parameter problem. The
accuracy with which the three desired parameters are
determined can possibly be increased with an increase
in the number of the experimental spectra in the train-
ing, test, and examination sets.

1

4

3

 

0.002

0
31002800

Wave number, cm

 

–1

 

Intensity, rel. units
0.010

3400 3700

0.006

0.004

0.008

 

1
2

3

4

 

Fig. 5.

 

 Valence Raman bands of water in the solutions of (
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)
KI, (
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) NaCl, and (
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Br and (

 

4

 

) of distilled water.

 

Table 4.  

 

Mean absolute errors for the concentrations of the
NaCl, KI, and NH

 

4

 

Br salts in the three-component solutions

ANN architecture
Three-parameter problem

NaCl KI NH

 

4

 

Br

Three-layer perceptron
(8 neurons)

0.27 0.14 0.17

Three-layer perceptron
(64 neurons)

0.26 0.13 0.15

Five-layer perceptron
(16–8–4 neurons)

0.25 0.14 0.16

Five-layer perceptron
(32–16–8 neurons)

0.22 0.13 0.13

GRNN with the sequential 
search for parameters

0.36 0.22 0.17

Ward network 0.29 0.14 0.15
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CONCLUSIONS

A method to identify salts in one-component aque-
ous solutions and to determine the salt concentrations
in one-, two-, and three-component solutions using
ANNs is proposed. We plan to employ and to develop
this method for the identification of salts and the mea-
surement of their partial concentrations in solutions
with a large number of components which can lead to a
significant increase in the efficiency of the method, for
example, in monitoring of the disposal of sewage that
contains inorganic impurities.
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