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A solution of spectroscopic inverse problems, implying determination of target parameters of the research object
via analysis of spectra of various origins, is an overly complex task, especially in case of strong variability of the
research object. One of the most efficient approaches to solve such tasks is use of machine learning (ML) methods,
which consider some unobvious information relevant to the problem that is present in the data. Here, we compare
ML approaches to the problem of nanocomplex concentrations determination in human urine via optical absorp-
tion spectra, perform preliminary analysis of the data array, find optimal parameters for several of the most popular
ML methods, and analyze the results. ©2021Optical Society of America

https://doi.org/10.1364/AO.434984

1. INTRODUCTION

Nearly 20 commercial nano-based drugs had been approved by
Food and Drug Administration (FDA) by 2019 [1], indicating
bright prospects of nanotechnology application in medical
purposes. FDA demands nanoagents injected into the human
body to be cleared completely in reasonable time [2], which,
in fact, restricts agents’ exposure time as well as prohibits their
accumulation in the body.

For small particles (less than 5 nm), elimination via the geni-
tourinary system (urine) prevails, due to the effective pore size
in normal intact endothelium being about 5–5.5 nm [2]. There
are several works concerning nanoparticle clearance from the
organism [2,3]. In [2], it was shown that quantum dots with
hydrodynamic diameter less than 5.5 nm are quickly eliminated
from the body. The authors [3] used confocal microscopy to
demonstrate a significant difference between the excretion
pathways of quantum dots with different zeta potentials. After
intravenous administration, positively charged particles quickly
left the organism, while negatively charged particles were accu-
mulating in mouse kidneys for more than 30 days. To sum it all
up, the problem of nanoparticle excretion from the organism
is extremely relevant and important for effective theranostic

nanoagent creation. It is crucial to perform express control over
the nanoparticles’ elimination from the organism to prevent
their accumulation in the body.

Optical spectroscopy favorably stands out among the other
techniques for monitoring the luminescent nanoparticles’ elimi-
nation from the body for its noninvasiveness and the ability to
register spectral signals in the on-line mode. The cornerstone of
any spectroscopic method is the solution of inverse problems—
extraction of the demanded information about the object from
the spectral signal originating from the interaction between
optical radiation and this object. A gradual increase in the num-
ber of problem parameters due to the complexity of the systems
under study and the improvement of spectroscopic equipment
leads to a complication of inverse problems. As a result, tradi-
tional methods to solve them often turn out to be ineffective,
which is why so much effort is now channeled toward find alter-
natives that can be the key to solve a wide diversity of practical
problems. One of the most promising alternatives is machine
learning (ML) methods, primarily artificial neural networks [4].

ML algorithms are actively applied to spectroscopic data
analysis to increase the efficiency of optical methods in many
fields of science. For instance, Bayesian optimization efficiently
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accelerates metamaterial design, allowing one to create novel
structures such as ultranarrow-band wavelength-selective ther-
mal radiators [5–7]. The main problem of spectral analysis in
biomedicine is the complexity of biological media that hampers
spectra analysis. It is not surprising that data-driven methods,
which do not require detailed knowledge about the research
object, are being widely integrated in biomedicine. ML algo-
rithms are frequently used for qualitative research of biological
samples or making diagnoses—that is, for solving classification
problems. Huang et al. [8] introduced a method employing
surface-enhanced Raman spectroscopy to determine spectral
markers for recognition of heparin-induced thrombocytopenia.
The developed platform is based on specific class of ML meth-
ods: chemometrics methods [principal components analysis
(PCA), linear discriminant analysis, and partial least-squares
(PLS)]. In [9], the application of Raman spectroscopy coupled
with artificial neural networks (ANN) to discriminate between
type 2 diabetes mellitus and healthy control groups provided
this discrimination with 88.9%–90.9% accuracy, depending on
the type of biotissue where the Raman signal was recorded. ML
algorithms also represent a powerful tool for solving regression
problems—numerical determination of parameters of optical
spectroscopy inverse problems. Olaetxea et al. [10] employed
Raman spectroscopy with PLS regression to monitor relevant
variations of pH and lactate as known biomarkers of several
pathologies.

The authors [11] successfully applied artificial neural net-
works for both pattern recognition and regression to solve the
inverse problem of fluorescence spectroscopy. They performed
optical imaging and determined the concentration of nanoa-
gents based on nanodiamonds and carbon dots in biological
tissues from their fluorescence spectra. The authors [12] demon-
strated a successful solution to the problem of nanocomposites’
renal clearance monitoring. The nanocomposites were based
on nanometer graphene oxides, covered with poly(ethylene
imine)–poly(ethylene glycol) copolymer and folic acid using
fluorescence spectroscopy and artificial neural networks. The
authors managed to recognize not only nanocomposites but
also their components by their fluorescence and also managed to
determine their concentration.

Even though most of the drug carriers approved by FDA
are either liposomes or polymers, great efforts are channeled to
develop commercially available drug carriers based on carbon
dots (CDs). Such interest lies in CDs’ unique properties includ-
ing low toxicity; superb photophysical properties; easy surface
functionalization; remarkable water solubility; and diversity of
simple, fast, and cheap synthesis routes [13,14]. Although there
are problems hampering CDs’ clinical applications [15], the
perspectives of their application as drug carriers seem promising.

This study presents the approach to solve the task of CD-
based nanoagents (CD + doxorubicin) renal clearance control
employing optical absorption spectroscopy and ML algorithms.
Application of the latter is conditioned by the absorption prop-
erties of biological medium, as urine demonstrates sufficiently
intense broadband absorption. Thus, one needs to isolate the
absorption signal of nanocomplexes and their components
against the background of urine absorption. The shape of the
urine spectrum depends on a variety of factors: age and gender of
the donor, his nutrition and health status, the time of sampling,

and so on. The practical impossibility of controlling all these
factors hinders creation of a “model” spectrum of urine absorp-
tion. Therefore, overcoming the variability of urine absorption
comes to the fore.

Despite the seeming versatility of ML methods, not every
model is suitable for solving a specific problem. Moreover,
setting the parameters of a particular model has a signifi-
cant impact on the quality of the solution. In this paper,
the three-parameter inverse problem of optical absorption
spectroscopy—determination of CD and doxorubicin (Dox)
concentrations in urine, as well as pH value of the suspension,
via optical absorption spectra—was solved employing artificial
neural networks, linear regression (LR), PLS regression, random
forest (RF), and gradient boosting (GB). Based on the obtained
results, general recommendations on the choice of machine
learning methods to solve the multiparameter inverse problem
of optical absorption spectroscopy were formulated.

2. MATERIALS AND METHODS

A. Objects of Research

CDs were synthesized via “green chemistry” hydrothermal
method. Briefly, 1.098 g of citric acid powder was dissolved in
7 ml of aqueous ethylenediamine and 20 ml of deionized water.
The solution was treated in an ultrasonic bath for 5–10 min.
After the treatment, the solution was kept in an autoclave for 2 h
at 220◦C. The resulting suspension contained CDs and synthe-
sis products. To isolate CDs nanoparticles, the suspension was
filtered through a track membrane with a pore size of 100 nm
and through silica gel with a pore size of 10 nm. The resulting
CD suspension was placed in a dialysis bag with a pore size of 1
kDa and stirred in water for 8 h using a magnetic stirrer to get rid
of residues of various chemical reaction products.

Urine samples were taken from four healthy donors (both
male and female) in different age groups (20–45 years), with
their consent. Doxorubicin hydrochloride (Sigma-Aldrich CAS
Number 25316-40-9) was used in the experiment.

B. Measurements

The values of the zeta potential and size of nanoparticles in the
suspension were determined using the Malvern ZetaSizer Nano
ZS (Malvern, Worcestershire, UK).

Infrared (IR) spectra of the CDs were recorded with a Bruker
IFS 66 Fourier transform IR (FTIR) spectrometer.

The optical absorption spectra of the nanoparticles’ suspen-
sions in urine were registered in the range from 190 to 800 nm
via a double-beam Shimadzu UV-1800 spectrophotometer with
a scanning increment of 1 nm. Standard photometric cuvettes
with 10 mm optical path length were used.

The pH values of aqueous and urine suspensions of nanopar-
ticles were measured via ionometric converter Acvilon I-500,
equipped with pH electrode InLab Ultra-Micro-ISM (Mettler
Toledo). The measured pH values of the suspensions varied
from 5.25 to 6.21.
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C. Model of CD-Doxorubicin Nanocomplexes’
Excretion from the Organism

The study considers the renal clearance model of nanocom-
posite components—CDs and doxorubicin. Under the natural
conditions existing in different parts of the body, Dox, which is
located on the CD surface due to physical adsorption, is ablated
from the CD surface. Thus, we consider the case when the CD-
Dox nanocomplex administered to a patient completely breaks
down into two components, CDs and Dox, being excreted with
urine. The proposed model does not exclude secondary adsorp-
tion of the drug on the nanoparticle surface. However, since
adaptive algorithms are trained on real experimental spectra and
consider all passing physical and chemical processes, the non-
linear contribution to the change in intensity due to secondary
adsorption at certain concentrations will be considered in the
process of computational model training.

D. Machine Learning Algorithms Application

In this study, three-parameter inverse problem of optical
absorption spectroscopy—determination of CD and Dox
concentrations in urine, as well as pH value of the suspension—
was solved. For the inverse problem solution, the following
algorithms have been chosen as basic ones, implemented with
optimal parameter selection: A) Artificial neural networks of
multilayer perceptron (MLP) type [16]. We used the logistic
activation function in the hidden layers and the linear activation
function in the output layer. The MLP was trained via stochastic
gradient descent with 500 epochs passing after minimum error
on the validation dataset as a stopping criterion. To eliminate
the influence of weights’ random initialization, each MLP was
trained 5 times followed by averaging the results. B) Linear
regression in a linear basis with preliminary data scaling [17], C)
partial least-squares regression [18], D) random forest [19], E)
gradient boosting [4].

The inverse problem was solved simultaneously for all the
parameters, i.e., one simultaneously determined the CD and
Dox concentrations and the pH value of the suspension. The
dataset was divided into training, validation, and test sets to
work with neural networks in the ratio of 70:20:10, and for
other models the division into training and test sets was carried
out in the ratio of 80:20. One used the training set to train the
models; the validation set was used to ensure that the training
was stopped in a timely manner; and the test set was for testing
the quality of trained models on independent data.

For each ML algorithm, a five-fold cross-validation procedure
was used to prevent the influence of the method of data splitting
into sets and to assess the quality of the constructed predictive
models more correctly. Thus, the original dataset was randomly
divided into a training/validation/test set 5 times. The results of
applying each of the ML algorithms to these sets were averaged.

These ML methods were implemented using the Keras and
Scikit Learn libraries in Python [4].

3. RESULTS AND DISCUSSION

A. Characterization of Nanoparticles

FTIR spectroscopy results showed the multifunctional con-
tent of surface groups of synthesized CDs (Fig. 1.): there are
bands of stretching vibrations of O-H and N-H/O-H groups
at 3285 and 3209−3309 cm−1 [20–22] and of C-H groups at
2936 and 2875 cm−1 [23]. The appearance of peaks at 1659,
1573–1575, and 1485 cm−1 indicates the presence of groups
CC, CO, and CN in the conjugated structure [24]. The peaks at
1434 cm−1 and 1384 cm−1 correspond to the stretching vibra-
tions of CN [22] and to the asymmetric stretching vibrations
of COC in the carboxylate groups [25], respectively. The peak
at 818−819 cm−1 corresponds to the out-of-plane bending
vibrations of CH groups of the benzene ring.

The values of the nanoparticle sizes and their zeta potential in
an aqueous suspension with a concentration of 0.01 mg/mL are
presented in Table 1. The value of the zeta potential modulus of
CDs indicates their high colloidal stability.

B. Optical Absorption Spectroscopy

Four series of one- and two-component suspensions of CD and
Dox in urine were prepared, corresponding to four samples of
urine from different donors. CD concentration varied from 0
to 1.2 mg/L with 0.05 mg/L increment; Dox varied from 0 to
1 mg/L with 0.042 mg/L increment. In total, 624 absorption
spectra CD and Dox suspensions were obtained, as well as four
urine spectra corresponding to different experimental series.
The spectra of one-component suspensions in urine are shown
in Fig. 2(A). The preprocessing of the optical absorption spectra
of the samples consisted of subtracting the minimum value for
each spectrum.

Dox has a broad absorption band in the region 400–550
nm and characteristic band in the UV region (See SI1.). Broad

Fig. 1. FTIR spectrum of synthesized CDs.

Table 1. Characteristics of the Research Objects in
an Aqueous Suspension (CD Concentration 0.01
mg/mL)

CDs

Size, nm 11
Zeta potential, mV −33.7
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Fig. 2. (A) Optical absorption spectra of one-component suspensions of CD and Dox in urine; (B) optical absorption spectra of urine in different
experimental series.

absorption bands in the UV and 300–400 nm regions cor-
respond to CDs. The urine itself possess specific absorption
spectra in the UV region. Moreover, the absorption spectra of
the urine vary depending on the series (Fig. 2(B)). This is due to
the complex chemical composition of urine and its variability
depending on the processes in the human body.

Thus, absorption bands corresponding to the different com-
ponents of the suspensions overlap, which, together with the
variability of urine, allow us to assume a nonlinear nature of the
optical density dependence on the concentration of carbon dots
and doxorubicin.

C. Preliminary Data Analysis

Three numbers—three parameters of the inverse problem to
be determined using ML algorithms—correspond to each
absorption spectrum of CD and Dox suspensions. These are the
measured pH value of the suspension, the CD concentration,
and the Dox concentration in the suspension (mg/L). Before the
direct application of machine learning algorithms, a prelimi-
nary analysis of the resulting dataset of absorption spectra was
performed.

Statistics of the dataset—the minimum (Min), maximum
(Max), average (Average) values of the optical density and its
standard deviation in each channel of the spectrum are shown in
Fig. 3(A). These data show that the most informative bands are
in the region of 200–300 nm, corresponding to the overlap of
CDs, Dox, and urine absorption bands, as well as in the spectral
range from 400 to 550 nm, corresponding to the absorption
band of Dox.

Analyzing the covariance matrix (Fig. 3(B)), composed of
pairwise covariances of the vector elements corresponding to the
data array, i.e., pairwise covariances of the intensity values in the
channels of the studied spectra (features), one can conclude that
the features used for training are strongly correlated in a wide
spectral range.

For preliminary data analysis, one performed linear
PCA—the unsupervised learning algorithm for data lin-
ear transformation [4]. PCA allows us to detect orthogonal
directions of variance maximum (principal components, PC)
in high-dimensional data and project the data into a new

subspace—the space of PC; its dimension is determined by the
number of PCs. PCA is widely used as a method of reducing
the dimensionality of the source data to preserve most of the
information or eliminate noise.

Compressing the original dataset into a new feature subspace,
it is necessary to select a subset of the eigenvectors (PC) that con-
tain most of the information variance. In our case, the first three
PCs provide 81.9% of the explained variance, which is sufficient
for a preliminary analysis.

Figure 4 shows the initial set of spectra projected into the
space of the first three PCs—the so-called score plot. The color
indicates the examples corresponding to certain values of the
target variables—parameters of the inverse problem, which
have to be determined in the framework of ML algorithm
application. Score plots contain information that is useful for
understanding how the data is arranged. The proximity of
two points means their similarity. By highlighting the value of
some external parameter (A—the number of the experimental
sample, B—pH, etc.), one can understand which factors most
strongly affect the spectral characteristics of suspensions.

Figure 4(A) shows that the samples corresponding to the
different urine solution composition can be visually divided
into four groups, which indicates that this factor strongly affects
the spread of properties. Milder clusterization can be carried
out for cases of changing pH values (Fig. 4(B)) and Dox con-
centration (Fig. 4(D)). The effect of pH on the variability of
the data is most likely due to changes in the composition of the
urine, but the effect of the Dox concentration can be attributed
to the presence of a characteristic Dox band in the absorption
spectra in the region of 400–550 nm, which does not overlap
with the absorption bands of CDs and urine. In the case of CD
concentration influence (Fig. 4(C)) on the suspension spectra’s
variability, it is impossible to distinguish distinct clusters. Based
on the obtained data, it can be assumed that the inverse prob-
lem will be solved more successfully for determining the Dox
concentration than the CD concentration.

Note that the percentage of variance not considered by the
first few PCs may contain some of the information that is essen-
tial for the considered problem. Therefore, to solve the problem,
we used the intensity values normalized in a certain way in all
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Fig. 3. (A) Channel-by-channel statistics of the dataset. (B) The covariance matrix of the dataset.

Fig. 4. PCA score plot for the first three PC: (A) urine composition; (B) pH; (C) concentration of CDs; and (D) concentration of Dox.

channels of the obtained spectra as input features, but not the
values of any number of PCs.

D. Results of Machine Learning Method Application

We selected the optimal parameters of the models for all the used
algorithms, except for the LR, to ensure a high-quality solution
to the problem.

MLP: MLPs with different numbers of hidden layers and
neurons in them were trained. Single-layer perceptrons (N01)
with 8, 16, 32, 64, and 128 neurons in the hidden layer; two-
layer perceptrons (N02) with 128+ 64, 64+ 32, 32+ 16,
and 16+ 8; and three-layer configurations (N03) with

128+ 64+ 32, 64+ 32+ 16, and 32+ 16+ 8 were
considered.

According to the obtained mean absolute errors presented in
Fig. SI2, the simplest MLP architecture with one hidden layer
and eight neurons in it demonstrates the best result, while the
group of MLPs with three hidden layers demonstrates the worst
ones. Consequently, the complication of the model (MLP)—
an increase of the number of network hidden layers and the
number of neurons in them—leads to reduction of the inverse
problem solution quality in case of CD and Dox concentration
determination in the suspension. Most likely, this is due to the
unfavorable ratio of the number of examples in the training set
and the number of adjusted MLP weight coefficients. The values
of mean absolute errors in determination of the concentration
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Fig. 5. Results of solving the inverse problem of optical absorption spectroscopy by different methods.

of components and the pH of suspensions do not differ much
when using different architectures: the value of the standard
deviation of the mean absolute error for different partitioning
of data into sets is comparable to the corresponding value for
different architectures. However, in absolute terms, the best
result is again demonstrated by the perceptron with one hidden
layer and eight neurons in it. It can be used to determine the
concentration of CD and Dox with an accuracy of 43 ng/mL
(3.6% of the maximum value) and 24 ng/mL (2.4% of the
maximum value), respectively, and measurement of pH value
with an accuracy of 0.04.

It should be noted that the error of determination of the
concentration of doxorubicin is almost 2 times (1.95) less than
the error of determination of the concentration of CDs. As we
assumed above analyzing the PCA results, this may be since
doxorubicin has an absorption band in the region of 400–550
nm, which does not overlap with the absorption bands of CDs
and urine.

To compare the quality of the solution of the inverse problem
by MLP with other methods, we used the architecture of the
MLP N01 (8) with one hidden layer with eight neurons in it.

PLS: The optimal number of used principal components
of the problem was found. For each target parameter of the
problem, the number of components corresponding to the
minimal mean absolute error (MAE) values for this parameter
was determined. Next, the average value of the number of these
components was calculated, which was subsequently used to
compare the PLS method with others. The results of using PLS
regression are shown in Fig. SI3. As a result, a PLS regression
with 33 components was used to solve the problem.

Just like in case of ANN, the MAE of the Dox concentration
determination via PLS method is 2 times less than for CDs.
With PLS regression, CD and Dox concentrations can be deter-
mined with an accuracy of 41 ng/mL (3.4% of maximum value)
and 21 ng/mL (2.1% of maximum value), respectively, and pH
can be measured with an accuracy of 0.05.

RF: A committee of 10 trees was used. The maximum tree
depth was selected as a regularization parameter—a constraint
imposed on the complexity of the model to prevent its overfit-
ting. Based on the data presented on Fig. SI4, a regressor with
a maximum tree depth of 7 was chosen as a reference regressor.
It can be used to determine the CD and Dox concentrations
with an accuracy of 178 ng/mL (14.8% of the maximum value)

and 74 ng/mL (7.4% of the maximum value), respectively, and
measure the pH with an accuracy of 0.06.

GB: Since the sklearn library’s GradientBoostingRegressor
method does not allow us to determine multiple target param-
eters simultaneously, each model had single output, unlike the
rest of the models used.

A model with 100 trees was used. One varied the maximum
tree depth (3, 7, 15) varied to find the optimal parameters of the
model. A regressor with a maximum depth of trees equal to 3 was
chosen as an optimal one (Fig. SI5). The GB method allowed us
to determine the CD and Dox concentrations with an accuracy
of 138 ng/mL (11.5% of the maximum value) and 31 ng/mL
(3.1% of the maximum value), respectively, and the pH value
with an accuracy of 0.05 units.

E. Comparative Analysis of Various Machine
Learning Methods’ Application Efficacy

The results of the machine learning algorithms’ application for
solution of the three-parameter inverse problem of absorption
spectroscopy to identify and determine the concentration of the
CD-Dox nanocomplex components in urine and the pH value
of urine with nanoparticles are shown in Fig. 5.

As follows from the obtained results, MLPs and PLS demon-
strated the best results coping with the inverse problem solution.
These algorithms showed almost the same results, considering
the error caused by the method of splitting the data into sets.
Due to the high variability of spectral data, the simplest MLPs
with a single hidden layer of eight neurons turned out to be
optimal. The efficiency of PLS clearly follows from Fig. 4. It is
because PLS is, in fact, linear regression in the space of eigenvec-
tors of the problem—the main components, and at the stage of
application of PCA we found out that the data is well clustered
in the space of the PC.

LR works poorly in problems where the dependence of
responses on features is complex, nonlinear, and also with a
high initial dimension of the data. Due to the high variability of
the spectral data, introduced by the variability of the chemical
composition of urine, and the significant overlap of the CD,
Dox, and urine bands in the absorption spectra of suspensions,
LR does not cope well with the solution of the inverse problem.
This method makes it possible to determine the concentration
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of CDs and Dox with a MAE of 87 ng/mL (7.3% of the maxi-
mum value) and 100 ng/mL (10% of the maximum value),
respectively, and a pH of –0.17.

RF and GB differ from previous models in that they represent
not a single approximating model but a committee of models.
Since 50% of randomly selected features were used in the con-
struction of each tree, the worse result shown by these models
is not associated with cross-correlations of features or with the
shape of the bands in the spectra. Decision tree models work well
in situations where examples in the original feature space form
isolated clusters, or “local islands.” In our work, this is not the
case, which is confirmed by the behavior of the MAE of determi-
nation of the concentrations of CDs and Dox. Determination
errors of the concentration of CDs, provided by RF and GB, are
the largest among those for all the algorithms used. At the same
time, when determining the concentration of Dox, GB and RF
demonstrate better results in comparison with LR. Moreover,
the dependence of the MAE on the method of dividing the data
into sets is less pronounced when determining the concentra-
tion of Dox, the absorption band of which does not overlap with
any other band in the region of 400–550 nm (Fig. 3(A)).

4. CONCLUSION

Machine learning algorithms are a powerful tool for solving
applied inverse problems of optical spectroscopy in the field
of biomedicine. Their application allowed one to isolate the
nanoparticles’ and drugs’ contribution to the absorption of
optical radiation in biological medium (urine) from the back-
ground of the biological medium absorption itself. Despite the
urine variability, ANN and PLS coped well with the solution
of the problem of simultaneous determination of the CD and
Dox concentrations, as well as pH value of the medium from the
optical absorption spectra of the suspensions. Thus, using PLS,
it is possible to determine the concentrations of CDs and Dox
with an accuracy of 41 ng/mL (3.4% of the maximum value)
and 21 ng/mL (2.1% of the maximum value), respectively, and
measure pH with an accuracy of 0.05 units.

There are many different ML algorithms. To choose the
model that is optimal for a specific task, it is necessary to con-
duct a preliminary data analysis. If the data demonstrates high
variability (for example, spectra of biological media), and the
spectral bands of the research objects overlap, then linear models
(LR in particular) will cope poorly with the solution of this
problem. Together with the plotting the spectra of the research
objects, the construction of the covariance matrix for the data
array allows us to make assumptions about how effectively the
committees of piecewise approximation models (for example,
RF and GB) will solve this problem.

PCA with the allocation of the first few PCs allows us to
highlight signs that are significant for analysis, to determine
the data structure—to highlight clusters of similar examples.
The PCA also allows one to estimate in advance how well PLS
will cope with the solution of the problem, which is determined
by the common nature of both methods (PLS is the LR in the
coordinated input and output spaces of the PC).

One should also pay attention to the need to increase the ratio
of the number of examples in the training set and the number of
input features. This can be done both by increasing the number

of examples (which is not always possible) and by selecting or
transforming input features. In addition, for complex models,
such as ANN, the situation can be partially improved by sim-
plifying the approximating model (reducing the number of
neurons in the first hidden layer).
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