APPLIED
PROBLEMS

Adaptive Methods for Solving Inverse Problems in Laser Raman
Spectroscopy of Multi-Component Solutions!
S. A. Dolenko?, S. A. Burikov?, T. A. Dolenko?, and I. G. Persiantsev®

“Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,
Leninskie Gory, Moscow, 119991 Russia
bDepartment of Physics, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991 Russia
e-mail: dolenko@srd.sinp.msu.ru, burikov@lid.phys.msu.ru, tdolenko@lid.phys.msu.ru, ipers@srd.sinp.msu.ru

Abstract—This study provides comparative analysis of approaches connected with application of neural net-
work based algorithms for efficient solution of pattern recognition problem (inverse problem with discrete
output) combined with solution of inverse problem with continuous output. The analysis is performed at the
example of the problem of identification and determination of concentrations of inorganic salts in multi-

component aqueous solutions by Raman spectrum.
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INTRODUCTION

It is well known that artificial neural networks
(ANN) are a class of mathematical algorithms that
have demonstrated high efficiency in the solution of
approximation, prediction, evaluation, classification
and pattern recognition problems. ANN are also
widely used for solution of inverse problems (IP),
where such their properties as learning by examples,
high noise immunity, and immunity to contradictory
data, play a special role [1, 2]. In this study, develop-
ment of methods of solving such problems is per-
formed at the example of the complex IP of identifica-
tion and determination of partial concentrations of
inorganic salts in multi-component aqueous solution
by Raman spectra.

The problem of determination of concentrations of
substances dissolved in water is very important for
oceanology, ecological monitoring, and control of
mineral, technical and waste waters. It is required to
solve this IP in non-contact express mode with rea-
sonable accuracy.

Method of Raman spectroscopy complies with
these requirements. Principle opportunity of use of
water Raman spectra for diagnostics of solutions arises
from high sensitivity of their characteristics to type
and concentration of salts dissolved in water. In [3, 4]
it is suggested to use Raman spectra of complex ions

(such as bands of anions NO; , SOi_ , POZ_ , CO§_

near 1000 cm™!) for determination of type and con-
centrations of salts in water. The type of anion can be
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determined by the position of the corresponding band,
its concentration—by the band intensity. But this
method is used only for analysis of substances having
their own Raman bands, i.e., for salts with complex
anions. The authors of [5—8] elaborated a method of
determination of concentration of dissolved salts by
water Raman valence band. In [5, 6], concentration of
one salt in the solution was determined using water
Raman valence band. In [7, 8], a method of determi-
nation of partial concentrations of several salts in
multi-component solutions by water Raman valence
band, was suggested and elaborated. It was possible
because of application of ANN for solution of this IP,

1. METHODOLOGY

Training of ANN requires a representative
dataset, i.e., a set of data that would reflect all char-
acteristic aspects of behavior of the object. This
dataset can be obtained in different ways. So, there
are the following methodical approaches to solution
of IP using ANN [9].

(a) “Model-based” approach. If an adequate ana-
Iytical model of solution of the direct problem is avail-
able, it can be used for generation of arrays of data with
necessary representativity. The main disadvantage of
this approach is that elaboration and realization of an
adequate model is often impossible or very difficult.
This approach is unacceptable in our case. Because of
complexity of the object, there is no adequate model
based on physical reasons that would allow obtaining
the dependence of water Raman spectrum on concen-
tration of dissolved salts, especially taking into
account their non-linear interaction.

(b) “Experiment-based” approach. The data used
for ANN training are obtained in experiment. This
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approach does not require a model to be available, and
it allows taking non-linear properties of the object into
account. However, obtaining a representative data set
can be a non-trivial experimental problem. In this
study, 8695 experimental spectra for 4268 different
solutions were obtained for realization of the “experi-
ment-based” approach.

(¢) “Quasi-model” approach. If no adequate phys-
ically grounded analytical model of solution of the
direct problem is available, one can replace it by a
parametrical “quasi-model” based on experimental
data. This model formally describes the dependence of
the observed data on the sought-for parameters. It was
shown in [7] that because of non-linear interactions in
the solutions, the approach involving the simplest lin-
ear quasi-model is unusable for determination of con-
centrations of salts in multi-component solutions.

In order to construct more complicated quasi-
models, which can describe the desired dependence
better, one can use more efficient adaptive methods for
construction of models—for example, Group Method
of Data Handling (GMDH) [10] or some types of
ANN [11, 12].

2. EXPERIMENT

Excitation of Raman spectra was performed by
argon laser (wavelength 488 nm, output power
450 mW). Raman spectra of water solutions of inor-
ganic salts were measured in 90° geometry using
monochromator (resolution 2 cm™') and CCD-cam-
era (Jobin Yvon). Spectra were measured in two
regions: 300—2300 and 2300—4000 cm™!' for every
sample. The temperature of samples during experi-
ment was stabilized at 22.0 + 0.2°C.

The objects of research were water solutions of the
salts NaCl, NH,Br, Li,SO,, KNO;, Csl. Concentra-
tion of every salt in the solution was changed from 0 to
2.5 M (step 0.2—0.25 M). In Fig. 1, there are Raman
spectra of water and water solutions in the region 300—
1800 cm~!. One can observe bands of valence vibra-

tions of anions SO? and of anions NO; (Fig. 1a).

Their intensities depend on concentrations of the cor-
responding salts (Fig. 1b).

In Fig. 2, it can be seen that water Raman valence
band depends on salt types (Fig. 2a) and on their con-
centrations (Fig. 2b): under increase of concentration
of salts, water Raman valence band (2600—4000 cm™")
shifts towards high frequencies, its half-width decreases,
the intensity of its high-frequency part increases, and the
intensity of the low-frequency part decreases. The
changes in position and shape of water valence band also
depend on type and concentration of salt [6].

3. RESULTS

To train ANN, the whole data array was divided
into training, test and examination sets (with 70 : 20 :
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10 ratio). The training set was used to train networks.
The test set was used for regular testing during train-
ing, to interrupt training at the minimum error on test
set and thus to prevent overtraining. All the results pre-
sented below were obtained on the out-of-sample
(examination) data set, thus providing impartial
assessment of the results. Also, the results on all the
three data sets were similar, what gave evidence of suf-
ficient representativity of the examination data set.

3.1. “Experiment-based” Approach

Within the “experiment-based” approach, two
types of network architecture were used.

For the first type, an ANN had five outputs, accord-
ing to the maximal number of components in a solu-
tion. Each output corresponded to one of the consid-
ered salts, and its desired value was equal to concentra-
tion of this salt in the solution. Two NN models were
used to solve the considered problem: perceptrons [11]
with three hidden layers, and General regression neural
networks (GRNN) [12]. Better results were shown by
perceptron with three hidden layers.

For the second type of network architecture, five
separate similar networks were used, each having one
output. The desired output of each network was equal
to concentration of the corresponding salt in the solu-
tion. Here also two different types of adaptive algo-
rithms were tested: perceptrons with three hidden lay-
ers, and GMDH [10]. In this case, perceptrons also
demonstrated better results.

Table 1 compares the results of solution of the con-
sidered problem by perceptrons.

Computational experiments (Exps. 1 and 2) [7, 8]
were performed for diagnostics of three-component
solutions using only valence band of the spectrum.
Significantly better results (smaller error values)
obtained in Exps. 3,4 [13, 14] in a wider range of con-
centrations and for five-component solutions, can be
explained not only by higher spectral resolution and
better quality of experimental spectra, but also by the
fact that the low-frequency region of spectrum
(Fig. 1), where bands of complex ions are present, was
taken into consideration. Exps. 3—7 were based on the
same experimental material.

In Exp. 5, five single-output networks were used
instead of one five-output network. As can be seen from
the Table 1, there is an improvement in the results of
Exp. 5 compared to Exp. 4, but it is not very significant.

Exps. 3—5 used selection of input features by abso-
lute value of standard deviation (st.dev, StD) of spec-
trum intensity in each channel, as this StD is propor-
tional to the entropy and thus to the volume of infor-
mation brought by this channel; 704 features selected
corresponded to channels with StD exceeding some
threshold. In Exp. 6, GMDH [10] was used to deter-
mine subsets of this set of features most significant for
determination of concentration of each salt. Union of

No. 4 2012



552

0.8

(a)

0.6

0.4+

0.2+
0.04

0.02

DOLENKO et al.

2.0
1.6 ®)

Intensity, arb. units

0.8

0.4
0.08]

T T

0.04...cx e,

Newmm 2 s an

o N
..».-‘..’bq.'-""

| |
400 800

Wavenumber, cm™

1200
1

1600

Fig. 1. Low-frequency region of spectra of water solutions of different salts with complex anions: (a) /—distilled water; 2—
KNO;3, 1 M; 3—Li,SOy4, 1 M, (b) I—distilled water; 2—KNO3, 1 M; 3—KNO3, 3 M.

these subsets gave 314 features used in Exp. 6. Com-
paring the results of Exps. 4 and 6 (Table 1), one can
see that on the average, the reduction of the number of
input features did not result in error reduction.

The main shortcoming of the algorithm of feature
selection described above is that some part of the
information brought by any channel (input feature)
can be useless for solution of the problem. In Exp. 7,
feature selection was performed based on the values of
cross-correlation (CC) and cross-entropy (CE). The
average value and the StD were computed over the
whole array of CC of an output feature with each input
feature. Input features whose CC exceeded the sum of
the average CC and its StD, were selected. This proce-
dure has been repeated for each output and for CE
instead of CC. Union of the thus obtained 10 sets of
input features gave 1134 inputs; it turned out that some
of the 704 features selected by the first method were

PATTERN RECOGNITION AND IMAGE ANALYSIS

not included in this number. Comparison of the results
of Exp. 7 to those of Exp. 4 in Table 1 shows that while
in general the errors became smaller, the decrease is
not very significant.

3.2. “Quasi-Model” Approach:
Construction of Quasi- Models

Not very high accuracy of solution of an inverse
problem using the “experiment-based approach” is
often reasoned by the unfavorable ratio of the number
of input variables of the problem (in this study, 704 in
Exps. 3—5) and the number of patterns in the training
set (in this study, 8229 in training and test sets
together). One can overcome it in two ways: by further
reduction of the number of input variables or by
increase of number of patterns.
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Fig. 2. Water Raman valence bands: (a) /—distilled water; 2—Csl, 2 M; 3—NaCl, NH,4Br, Li,SO4—0.4 M, KNO; and CsI—

0.6 M, (b) I—distilled water; 2—CslI, 1 M; 3—Csl, 2 M.

When realization of additional experiments is
impossible, too expensive, or takes unacceptably
much time, one can try to get additional patterns by
interpolation using a quasi-model—a parametrical or
an adaptive model of solution of the direct problem.
However, one should realize that if the quasi-model is
not adequate enough (i.e. if it does not describe the
solution of the direct problem sufficiently well), use of
such “quasi-model” approach can lead to deteriora-
tion of quality of IP solution instead of its improve-
ment. In particular, this was the case for a simple linear
combination quasi-model applied to the data used in
this study [7].

In this paper, three types of quasi-models were
under consideration: those based on perceptron,
GRNN, and GMDH.

To estimate applicability of the “quasi-model”
approach for this problem, first it was necessary to
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choose the best of the constructed quasi-models (the
one providing minimal error of solution of the direct
problem on the examination data set).

In Table 2, one can see statistical indexes, their
minimal, maximal, mean values and standard devia-
tions over all the 704 simulated channels. Let us accept
the following notion:

y—the estimate of the value of the output variable
made by the model (neural network);

d—the desired value of this output variable;
d —the mean value of the desired output over the
whole considered data set;

N—the number of patterns in the considered
data set.

Then the statistical indexes used in Tables 2—4 are
the following.
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Table 1. Mean absolute error for determination of concentrations of salts in multi-component solutions by Raman spectra,
within the “experiment-based” approach (M, on examination data set)

Exp. no. 1 2 3 4 5 6 7
Reference [7] [8] [13, 14] This study
Components 3 3 5

Range 0.7 M IM 2.5M

Bands Valence only Both bands

Inputs 200 200 704 704 704 314 1134
Selected by none none st. dev st. dev st. dev GMDH CC, CE
Nets 1 1 1 1 5 1 1
NaCl 0.07 0.07 0.047 0.029 0.029 0.031 0.028
NH,Br 0.06 0.11 0.029 0.024 0.024 0.025 0.022
Li,SO, - — 0.040 0.020 0.019 0.018 0.019
KNO; - — 0.046 0.019 0.017 0.018 0.018
Csl - — 0.032 0.023 0.023 0.023 0.024
KI 0.05 0.12 — — — - -

The coefficient of multiple determination R squared
(R?) is computed by the formula:

R = 1_2(01;)/)2.
> (d-ay

This index compares the precision of the tested
model to that of the trivial benchmark model whose
estimate is the average value of the desired output over
the whole considered data set. For the absolutely cor-
rect estimate, the value of R? squared is equal to 1; for
an estimate worse than the trivial one, R? squared
becomes negative. For many types of problems, R?
squared is the most substantive universal criterion for
model quality estimation. The value of R? is dimen-
sionless.

The mean relative error (MRE) is computed by the
formula:

_ Ild-yl
Co0 = ]—VZTX 100% .

This index is also dimensionless, and it is usually
expressed in per cent.

Table 2. Statistical indexes of construction of quasi-models
based on perceptron and GRNN (on examination data set)

Index, model min max | mean | st.dev.
R?, perceptron 0.681 | 0.983 | 0.933 0.048
R?, GRNN 0.768 | 0.974 | 0.933 | 0.041
MRE, %, perceptron | 0.5 272.9 9.9 27.0
MRE, %, GRNN 0.4 75.0 7.1 11.6

PATTERN RECOGNITION AND IMAGE ANALYSIS

Summation in both formulas is performed over all
the patterns of the considered data set (from 1 to N).

Remember that a quasi-model in our case is a
model dependence of intensity in every spectral chan-
nel on concentrations of components in the solution.
Indexes in Table 2 are shown for quasi-models based
on perceptron and GRNN. One can see that mean
indexes in Table 2 are close, and there is no reason to
prefer either of examined quasi-models at this stage.

Construction of a quasi-model based on GMDH is
carried out separately for every channel, and therefore
this routine is much more labor-consuming. That is
why such construction was first performed for four
channels where the quasi-models based on GMDH
and perceptron demonstrated results of different qual-
ity (bad or good). Comparison of the results for all the
three types of models is presented in Table 3.

One can see that there is no pronounced advantage
of one or another quasi-model. For this reason, fur-
ther studies of application of the “quasi-model”
approach were performed for quasi-models based on
perceptron and GRNN only. The quasi-model based
on GMDH is interesting according to two aspects: as
a method of selection of significant input variables for
solution of 1P (Table 1, Exp. 6), and as a method to
obtain relatively simple equations for solution of direct
problem, which can be an object of independent anal-
ysis. However, studies in the second direction were out
of scope of this study.

3.3. “Quasi-Model” Approach: Implementation

The data for the “quasi-model” approach were
prepared as follows.
No. 4
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Table 3. Comparison of the results of construction of quasi-models based on perceptron, GRNN and GMDH for some
spectral channels (on examination data set)

Index, model Channel}1 Channel 4531 Channel 1%? Channel 58?
951.4cm 1047.3 cm 1672.2 cm 3494.1 cm
R?, perceptron 0.830 0.951 0.726 0.983
R?>, GRNN 0.786 0.974 0.768 0.970
R?, GMDH 0.665 0.963 0.677 0.978
MRE, %, perceptron 24 .4 198.5 8.8 0.75
MRE, %, GRNN 23.0 73.4 7.5 0.97
MRE, %, GMDH 18.3 59.4 8.9 0.79

Table 4. Some statistical indexes for determination of salts concentration in multi-component solutions by Raman spectra
using neural networks within “experiment-based” and “quasi-model” approaches. Specification of data sets: EE—experi-
mental examination, QE—quasi-model examination. Specification of approaches: Exp—“experiment-based,” QMP and
QMGR—*“quasi-model” based on perceptron and GRNN, respectively

Approach Set NaCl NH,Br Li,SO, KNO; Csl
R2
Exp EE 0.990 0.993 0.996 0.996 0.994
QMP EE 0.969 0.985 0.983 0.986 0.987
QMGR EE 0.980 0.986 0.992 0.991 0.989
QMP QE 0.989 0.995 0.990 0.991 0.996
QMGR QE 0.990 0.992 0.991 0.991 0.992
COO, %
Exp EE 9.2 5.8 5.6 4.3 59
QMP EE 17.4 9.3 10.4 8.2 9.3
QMGR EE 12.5 8.8 7.7 6.8 7.5
QMP QE 10.4 7.2 8.6 8.9 6.2
QMGR QE 11.3 9.5 9.5 9.5 9.1

To create “quasi-model” data sets, a grid with con-
centration step 0.15 M for all salts was chosen. Only
spectra with total concentration less than 2.5 M were
considered. There were 535130 such spectra with dif-
ferent salt concentrations (i.e., more than 10 times as
many as experimental spectra with different concen-
trations). The obtained array of 53130 “quasi-model”
spectra was randomly divided into training, test and
examination data sets in the ratio 70 : 20 : 10. After
that, training and test sets were complemented by
training and test sets from experimental array. Exami-
nation sets were left separate. Thus for application of
“quasi-model” approach the following data sets were
used: training (43593 patterns), test (12454 patterns),
examination quasi-model (5313 patterns) and exami-
nation experimental (914 patterns).

PATTERN RECOGNITION AND IMAGE ANALYSIS
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Two such complete arrays were obtained: one by
generation of “quasi-model” spectra using the quasi-
model based on perceptron and another one based on
GRNN.

The obtained arrays were used to train identical
perceptrons with the same architecture and training
parameters as those used for solution of IP within the
“experiment-based” approach (Table 1, Exp. 4).

Table 4 compares the results obtained within the
“experiment-based” approach on the examination
(experimental examination) data set and the results
obtained within the “quasi-model” approach on
quasi-model examination and experimental examina-
tion data sets, for two types of “quasi-model”—Dbased
on perceptron and based on GRNN.
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The obtained results allow one to make the follow-
ing conclusions:

1. The “quasi-model” approach deceived expecta-
tions in comparison with the “experiment-based”
approach. In all cases the results on experimental
examination set obtained within the “quasi-model”
approach were worse or considerably worse than the
initial results obtained within the “experiment-
based” approach. This indicates low adequacy of the
used quasi-models.

2. The quasi-model based on GRNN in all cases
produced higher results on the experimental examina-
tion set than the quasi-model based on perceptron.

3. The results obtained within the “quasi-model”
approach on quasi-model examination set are compa-
rable with those obtained within the “experiment-
based” approach on experimental examination set.
This is a revelation of higher representativity of data
sets in the “quasi-model” approach.

CONCLUSIONS

The complex inverse problem of identification of
salts and determination of their partial concentrations
in 5-component water solution by Raman spectra was
solved within the “experiment-based” approach using
two bands of Raman spectrum—Ilow-frequency band
(300—1830 cm™!) and valence band (2700—3900 cm™!),
as well as using only water Raman valence band. When
both bands of experimental Raman spectra were used as
input data, the obtained values of the error of determi-
nation of concentration on the examination dataset
were low enough: the mean absolute error was from 0.02
to 0.03 M in the concentration range from 0 to 2.5 M.

Attempts of further reduction of the error included:
using a separate single-output network for each salt
instead of a common 5-output network; using the
“quasi-model” approach to increase the number of
patterns; use of GMDH for further reduction of the
number of input features; use of a combination of
cross-correlation and cross-entropy as an alternative
method of feature selection. However, error reduction
brought by all the applied methods was insignificant.

Further studies should include use of more sophis-
ticated feature selection or feature extraction meth-
ods, and elaboration of more adequate quasi-models.
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