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Abstract. The present paper is devoted to an elaboration of a method of
diagnosis of alcoholic beverages using artificial neural networks: the inverse
problem of spectroscopy – determination of concentrations of ethanol, metha-
nol, fusel oil, ethyl acetate in water-ethanol solutions – was solved using Raman
spectra. We obtained the following accuracies of concentration determination:
0.25% vol. for ethanol, 0.19% vol. for fusel oil, 0.35% vol. for methanol, and
0.29% vol. for ethyl acetate. The obtained results demonstrate the prospects of
using Raman spectroscopy in combination with modern data processing meth-
ods (artificial neural networks) for the elaboration of an express non-contact
method of detection of harmful and dangerous impurities in alcoholic beverages,
as well as for the detection of counterfeit and low-quality beverages.
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1 Introduction

At present, when there is a significant amount of danger to health low-quality products
on the market, it is necessary to control the quality of alcoholic beverages. Con-
sumption of counterfeit alcoholic drinks is dangerous for life because even a small
amount of toxic impurities (methyl alcohol, fusel oils, etc.) can cause intoxication of
the human organism – allergenic, immunomodulatory, genotoxic actions. One of the
most famous strong alcoholic beverages is vodka produced by fermentation and dis-
tillation of grain, potatoes, sugar beet, grape, etc. [1]. Vodka is a water solution of
ethanol with a concentration of 37.5–56% vol. (Russia GOST standard 12712-2013);
therefore, the development of express and non-contact methods of diagnostics of water-
ethanol solutions is an extremely urgent task.
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Control of quality of strong alcoholic beverages assumes the solution of two sep-
arate problems: (1) determination of content (concentration) of ethyl alcohol; (2) de-
termination of potentially dangerous impurities and their concentrations. There are
many methods of determination of the content of ethyl alcohol in water-ethanol
solutions: by measuring the density of the sample [2], refractive index [3], boiling point
of the solutions [4], chromatographic method [5], method of nuclear magnetic reso-
nance (NMR) [6, 7] etc. Non-contact means of vibrational spectroscopy – IR
absorption spectroscopy [8] and Raman spectroscopy [9] - are also widely used. Most
of them are also used to solve the second problem – determination of the concentrations
of impurities dangerous to a human in alcoholic beverages. First of all, it applies to
chromatography, NMR, methods of vibrational spectroscopy.

It should be noted that the methods based on the measurement of the density of the
solution or its refractive index, in the presence of a large number of impurities in the
solution are not precise enough. Chromatographic analysis, chemical methods, and
NMR method provide high accuracy of determination of substances in solutions, but
they are time-consuming and expensive. Besides, these methods are contacting, i.e.,
they require opening the container and extracting a certain amount of sample from it.

For practical implementation, the method of Raman spectroscopy favorably differs
from the other mentioned methods. It is non-contact, express, we can apply it in real
time mode, it does not require complicated sample preparation and expensive reagents,
so it is widely used for the diagnostics of various drinks. Thus, Raman spectroscopy is
used for determination of the content of glucose, sucrose and fructose in food drinks
[10], for studying the structure of water-ethanol solutions [11, 12], for determination of
the content of ethanol and methanol in alcoholic beverages [13], for identification of
various types of whiskey [14].

However, in the presence of a large number of various impurities in drinks, the
solution of the inverse problem (IP) of Raman spectroscopy – determination of the type
and concentrations of contaminants in multicomponent water-ethanol solutions – is
significantly complicated. Therefore, instead of conventional methods of solution of
such multi-parameter ill-posed IPs, adaptive methods of data analysis are used. They
provide acceptable solutions [15, 16]; e.g., artificial neural networks (ANN) are used to
solve such IPs [17]. ANN are actively used in solution of a wide range of problems
associated with pattern recognition, forecasting, classification, etc. In particular, ANNs
are rather widely used in spectroscopy. So, ANNs were used for determination of the
type and concentration of salts dissolved in water by Raman spectra [15, 16, 18], for
express determination of components of wine by the absorption spectra [19], for
determination of blood glucose by the spectra of IR absorption [20].

In this study, the problem of diagnostics of water-ethanol solutions by Raman
spectra included (1) determination of the concentration of ethyl alcohol in the solution
and (2) determination of the concentration of harmful impurities in vodka. The method
of ANN was used to solve these problems.
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2 Problem Statement and Data Preparation

The impurities most commonly occurring in counterfeit and low-quality alcohol –
methanol (the main cause of poisoning by counterfeit alcohol), fusel oil, and ethyl
acetate, – were used as harmful substances. Since the main components of the fusel oil
are isoamyl and isopropyl alcohols, a mixture of 70/30 (by volume) of isoamyl and
isopropyl alcohols was used as a model of fusel oil. Methanol, fusel oil, ethyl acetate
were dissolved in the mixture of ethanol and water (concentrations 35, 38, 40, 42, 45,
49, 53, 57%). In this way, vodkas of various strengths were simulated. The following
impurity concentrations were used: methanol – 0, 0.05, 0.14, 0.4, 1.1, 3.1, 8.6, 24%;
fusel oil - 0, 0.025, 0.07, 0.22, 0.66, 2, 6, 18%; ethyl acetate – 0, 0.17, 0.35, 0.7, 1.4,
2.8, 5.6, 11.2%. For the preparation of the solutions, ethyl alcohol category “alpha,”
isoamyl alcohol category “pure for analysis,” isopropyl alcohol category “chemically
pure,” ethyl acetate category “pure,” methyl alcohol category HPLC (suitable for high-
performance liquid chromatography) were used.

The Raman spectra were obtained using a laser spectrometer which included an
argon laser (488 nm wavelength, 200 mW power) and a registration system consisting
of a monochromator (grating 900 grooves/mm, 500 mm focal length) and a cooled
CCD camera. Edge-filter was used to suppress the elastic scattering. Spectra were
recorded in two ranges with centers at 520 nm (low-frequency region of the spectrum
or the region of so-called “fingerprints”) and 573 nm (the region of stretching vibra-
tions). As a result, we obtained the full Raman spectrum in the range of 200–
3800 cm−1. The useful spectral resolution was 2 cm−1. For each of the ranges, 10
spectra were recorded (two cycles of measurements, 5 spectra each). The acquisition
time for one spectrum was 2 s. The obtained 10 spectra were averaged.

The principle possibility of determining the concentration of ethanol and harmful
impurities is caused by the fact that ethyl, methyl, isoamyl, isopropyl alcohols and ethyl
acetate have their specific lines in the “fingerprint” spectral region (200–1600 cm−1)
and in the area of valence vibrations of CH- and OH-groups (2600–3800 cm−1)
(Fig. 1). In the case of a single-component solution, one or several Raman bands
specific to the component can be selected, and its concentration can be determined by
the intensity of this band [13]. In the case of multicomponent solutions, the situation is
complicated by the fact that the vibrational bands of different substances overlap.

Among the negative factors that reduce the accuracy of the solution of the problem
in real conditions (in the diagnostics of real drinks) are also detector noise, fluorescent
pedestal caused by impurities, and fluctuations in the intensity of the Raman signal,
produced by the instability of the laser radiation power. The ANN method can suc-
cessfully overcome these difficulties due to the ability of the ANN to learn, to sum-
marize the provided information and to identify hidden patterns.

The dataset prepared to implement the ANN solution of the problem contained
4046 patterns. We divided it into training, validation and test sets in the ratio of
70:20:10, respectively. Thus, the training set contained 2800 patterns, validation set –
800 patterns, test set – 446 patterns. Training of the ANN was performed on the
training set, stop at the minimum error on the validation set was used to prevent
overtraining, and independent evaluation of the results was made on the test set.
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Thus, the regression problem stated in this study was to determine the values of 4
parameters by 2048 input characteristics. The sought-for parameters were the con-
centrations of fusel oil, ethyl acetate, methanol, and ethanol.

3 Selection of the Optimal MLP Architecture

The ANN architecture used to solve this problem was the multi-layer perceptron
(MLP). This study included a search for the optimal numbers of layers and neurons, as
well as search for the optimal method of selection of significant input features for the
MLP. For each configuration of the parameters, 5 MLPs were trained with various
weights initialization; the statistical indicators of their application were averaged.

Fig. 1. Top – Raman spectra of pure substances. Bottom – examples of Raman spectra of the
studied water-ethanol solutions.
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The multi-parameter IP was solved with two ways of parameter determination. For
autonomous determination (ADP), a separate single-output ANN was trained for each
parameter. For simultaneous determination (SDP), a single 4-output ANN was built.

At the first stage, the results for MLPs with various numbers of hidden layers
(HL) and neurons in them were compared. The results are presented in Fig. 2.

It can be seen that ADP gives a consistently better result for ethanol and slightly
better results for other components of the solutions. All the considered architectures
give comparable results except that MLP with three HL perform better for ethanol with
ADP, and show some deterioration with SDP.

The obtained results may indirectly indicate that the complexity of the problem is
not very high and that the data set has sufficient representativity.

4 Significant Feature Selection

At the second stage, we considered the selection of significant input features by various
methods. The selected features were used to train an MLP with 32 neurons in the single
HL. The training was also carried out in the modes of ADP and SDP.

Three of the considered methods were based on the calculation of the significance
of interrelation between each of the input features and each of the determined

Fig. 2. Mean absolute error, % vol. for each determined component, for various MLP
architectures and for different ways of parameter determination.
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Fig. 3. Mean absolute error, % vol. for each determined component, for various methods of
significant feature selection, for various numbers of features. Left – autonomous determination of
parameters, right – simultaneous determination of parameters.
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parameters. The values of cross-correlation (CC), cross-entropy (CE), and the impor-
tance of inputs obtained through the weights analysis of a neural network (WA) were
used as the significance value. Those features, the significance value of which exceeded
a certain threshold, were selected to be used. The threshold values were set in such a
way that a certain pre-defined number of features were selected. For SDP, the network
input was fed with all the features selected for at least one of the determined param-
eters. So, in this case, the number of features was, in fact, higher than for ADP.

The selection of features by the standard deviation (SD) value is based on the
assumption that the amount of information carried by the feature is proportional to the
entropy, which is, in turn, proportional to SD. Here also the threshold was set in such a
way that a certain number of features were selected. As this method uses no infor-
mation about the outputs, the numbers of features for ADP and SDP were the same.

The results of solving the problem using feature selection are shown in Fig. 3. For
fusel oil, methanol and ethyl acetate, feature selection in some cases can slightly reduce
the error; the best results are obtained with CE. For ethanol, there is a sharp drop in the
quality of the solution when using feature selection through CC and CE in the case of
ADP. This fact is since all characteristic lines of the ethanol spectrum overlap with the
lines of other components. As a result, without information about the content of other
components, it is impossible to accurately determine the concentration of ethanol with a
reduced number of features. If such information is received (in the case of SDP), no fall
in the quality of the solution is observed.

5 Conclusion

According to the results of the study, the following conclusions can be drawn

• Raman spectroscopy with MLP processing of spectra can be successfully used to
detect hazardous impurities in aqueous ethanol solutions.

• Autonomous determination gives a consistently better result than simultaneous for
ethanol and slightly better results for fusel oil, methanol, and ethyl acetate.

• All the considered architectures give comparable results except that MLP with three
hidden layers perform better for ethanol with autonomous determination, and show
some deterioration with simultaneous determination of the parameters.

• Significant feature selection provides a small improvement in the quality of the
solution; the best results we obtained with cross-entropy.

The best-obtained accuracy of the determination of component concentrations was:
0.25% vol. for ethanol (enough for practical purposes); 0.19% vol. for fusel oil (less
than the maximum permissible concentration (MPC)); 0.35% vol. for methanol and
0.29% vol. for ethyl acetate (several times greater than MPC but more than an order of
magnitude less than the lethal concentration for 100 ml of drink).
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