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This paper presents the results of application of the elaborated
methods for monitoring of nanodiamonds in human urine using
fluorescence spectroscopy. High efficiency of artificial neural
networks applied for recognition and estimation of the concentra-
tion of nanodiamonds in urine with a strong autofluorescence
background is demonstrated. It was found that minimal con-
centration of nanodiamonds with strong fluorescence containing
nitrogen-vacancy (NV) centers can be detected in urine by
fluorescence spectroscopy at a level of 3.06� 10�4 gL�1; while
use of artificial neural networks for detection of weakly
fluorescent detonation nanodiamonds provides reasonably high
accuracy of detection, not worse than 6.8� 10�3 gL�1.

� 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction Theranostics is one of the hot topics
in modern biomedicine. A general goal is to create a
nanocarrier combining an opportunity for tissue diagnostics
and an ability to provide a therapeutic effect. Nanodiamonds
(ND) are a promising material to accomplish this goal
[1–11]. Combining such properties as stable luminescence,
polyfunctionality of the surface which can be specifically
modified, active sorption properties, non-toxicity and
biocompatibility, NDs have triggered a high level of
interest for their application in biomedicine.

Biomedical applications of ND as fluorescent
biomarkers [1–3, 8, 11] including visualization of
processes in cells [5, 8, 9], as a drug carrier and sorbent
of toxic elements [4, 6, 7, 10, 11] have been reported.
Typically for biomedical applications, the surfaces of

NDs are modified [12, 13] or covered with a shell [14–19]
such as, for example, mesoporous silica shell [15, 16] or
copolymers [17–19], which have, besides fluorescence
properties, higher biocompatibility and higher ability to
adsorb and retain medical drugs in comparison with ND.
Using aminated and carboxylated NDs, the authors [20]
demonstrated controlled release of the drugs tetracycline
and vancomycin by changing the pH. In the article
[21], the neuroprotective effect of nanodiamonds in
Alzheimer’s disease was shown. The authors of Ref. [22]
reported application of nanodiamonds for curing gum
disease, for healing of skin, and exfoliation of damaged
skin in the case of sunburns or scar tissue. Various groups
investigated the role of NDs as anticancer drug delivery
systems [23, 24]. With that being said, one can conclude
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that nanodiamonds are a very promising material in
medical applications.

Nevertheless, practical application of ND as fluorescent
biomarkers and drug carriers is closely related with the
problem of optical visualization of nanoparticles in
biotissue. At present, the most common method is optical
visualization using fluorescence [25–27]. A serious problem
in such studies is the background fluorescence due to the
fluorescence of inherent fluorophores in biological tissue –
tryptophan, phenylalanine, tyrosine, collagen, flavins, beta-
carotene, porphyrins, vitamins, etc.

The autofluorescence spectrum of the tissue is the result
of superposition of fluorescent bands of many tissue
fluorophores, and it extends from 200 to 750 nm [26]. Such
autofluorescence significantly hampers observation of the
occurring processes and the motion of fluorescent nano-
particles. That is why the problem – how to get rid of the
background fluorescence – is a very urgent one. Methods of
extraction of the fluorescent signal of nanoparticles-markers
in the presence of the autofluorescence background of
biological tissue, and control of the change in fluorescence
intensity needs to be further elaborated. Obviously, these
methods are necessary for testing theranostic nanoparticles:
it is required not only to keep track of biomarkers and
drug carriers, but also to control their distribution (and
concentration) in specific organs, and also to monitor the
rate and efficiency of excretion of nanoparticles from the
organism.

At present, the problem of fighting background
fluorescence is solved basically by the following methods:
(i) in the field of materials science, by development of
nanoparticles with optimal optical properties, by elaboration
of methods of targeted modification of their surface and of
synthesis of nanocomposites for providing or enhancing
the required properties [14–19, 28]; (ii) in the field of
experimental technique, by focusing the exciting laser
radiation in a very small volume in order to reduce the
background signal, i.e., by improvement of the rather
expensive equipment [29, 30]. In both cases, there exists the
problem of taking into account interactions among nano-
particles themselves and with surrounding bioenvironmen-
tal, which is still far from its solution.

The authors of this paper suggested using methods of
intelligent data analysis, namely, artificial neural networks
(ANN), for elaboration of optical visualization of nano-
particles in biotissue [31, 32].

ANN is one of the most powerful algorithms of data
analysis providing efficient solution of pattern recognition
problems and of multi-parameter inverse problems in
many areas, including optical spectroscopy [31–36].
Adaptive methods of data analysis are used today in
almost all fields of bioinformatics [31], as here there
is often lack of adequate physical or mathematical models
describing the studied objects. Solving such problems as
selection of genome fragments, classification of proteins,
recognition of transmembrane helixes, identification of
signal peptides, etc. [36], recognition of diseased tissues

by their modified fluorescence [33, 34] using ANN is now
very promising.

A proof of principle separation of the fluorescence
signal of carbon nanoparticles from the autofluorescence
of egg protein using artificial neural networks has been
demonstrated for the first time [37, 38]. Besides that,
quantitative threshold of sensitivity of the method has been
determined: estimation of minimal concentration of nano-
particles (when the presence of nanoparticles can be
detected confidently against the background of autofluor-
escence of biotissue) has been obtained with the help of
ANN.

In this study, the methods for monitoring of theranostic
nanoparticles in human urine using fluorescence spectros-
copy were elaborated. Such optical visualization of ND
is the main stage of control of efficiency of excretion
of nanoparticles from the human body. Accuracies of
determination of concentrations of two types of nano-
diamonds in urine have been determined, namely for
nanodiamonds with fluorescent nitrogen-vacancy (NV)
centers (by their calibration dependencies) and for detona-
tion nanodiamonds (by neural network algorithms). Use of
the neural network technique as a high efficiency method for
recognition and estimation of the concentration of detona-
tion nanodiamonds in urine is demonstrated.

2 Experimental
2.1 Materials Two types of nanodiamonds with

different fluorescent properties were used: nanodiamonds
with NV-centers (ND-NV) and detonation nanodiamonds
(DND).

Nanodiamonds with NV centers were obtained by
milling of the 15mm diamonds synthesized by the HPHT
method. The milled particles were irradiated with a 2MeV
electron beam; the obtained dose was 5� 1018 e cm�2. Then
the particles were annealed for 1 h at 850 8C and ground in a
mill with zirconium beads. The resulting particles were
cleaned by HF and separated into fractions in a centrifuge.
As a result of fractionation, 100 nm ND with NV-centers
were separated. The studied ND-NV samples were not
further modified.

DND was synthesized by explosion of mixture of
trinitrotoluene (TNT) and 1,3,5-trinitrotoluene-1,3,5-
x-triturate (RDX) in a gas cooling media. DND was
separated from the soot by using a mixture of sulfuric/nitric
acids with addition of sodium oleate (this work was
performed at NPO Altay, Russia). As a result of further
milling and fractionation, the fraction of DND with size
5 nm was separated. One should note that during treatment
of the soot in the mixture of sulfuric and nitric acids, groups
of oxidized graphite can be formed on the DND surface.
Then the surface of the separated DND particles was
modified with carboxylic groups by treatment of DND in air
at 420 8C for a period of 1 h.

ND suspensions in urine diluted 10 times were prepared
with DND concentrations varying from 0 up to 0.2 g L�1 in
increments of 0.01 g L�1; the concentration of ND-NV was
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changed from 0 to 0.02 g L�1 in increments of 0.001 g L�1.
Choice of the ND concentration range was based upon
experiments conducted in diluted urine was used, and in real
urine the maximal concentrations used was 2 and 0.2 g L�1

(corresponding to safe working concentrations for bioma-
terial [2, 3, 39]). Urine samples were taken from 15 healthy
donors (both male and female) in different age groups
(19–50 years), with their consent.

2.2 Experimental setup Fluorescence and Raman
spectra of samples were measured using a laser spectrome-
ter. For excitation of fluorescence of detonation ND, a diode
laser (wavelength 405 nm, output power 100mW) was used;
argon laser (wavelength 514.5 nm, output power 200mW)
was used for excitation of fluorescence of ND-NV samples.
Fluorescence spectra were measured using a monochroma-
tor (Acton, grade 1800 grooves/mm, focal length 500mm)
and a photomultiplier (Hamamatsu, H-8259-01) in the
spectral range 400–750 nm, with practical resolution of
0.5 nm. The temperature of the samples was stabilized at
20.0� 0.1 8C with the help of a special thermostabilized
cuvette. The obtained spectra were corrected to spectra
acquisition time and to laser power, and then normalized by
the area under the curve of water Raman valence band.

Spectra of the IR absorption of the samples were
measured using a Varian 640-IR FT-IR spectrometer
equipped with an attenuated total reflection cell with a
ZnSe crystal. The spectral resolution was 4 cm�1.

3 Results and discussion
3.1 Fluorescence properties of ND-NV in urine.

The method for determination of ND-NV
concentration in urine by fluorescence spectra In
Fig. 1, the obtained Raman and fluorescence spectra of urine
and suspensions of ND-NV in water and urine at the same
concentration of 0.02 gL�1 are presented. The band with
maximum near 623 nm corresponds to valence vibrations of
water OH-groups. Zero-phonon lines near 575 and 637 nm

testify that in the studied ND samples, two types of nitrogen
vacancies are present: �NV0 and NV�. As fluorescence of
ND-NV is caused by NV-centers located deep in the bulk of
ND, interactions of surrounding molecules with surface
groups of ND cause no significant influence on the intensity
of ND fluorescence. Besides this urine fluorescence at
excitation by radiation with wavelength 514.5 nm is rather
weak, while NDs with NV centers have intense fluores-
cence; that is why extraction of the fluorescence signal of
ND-NV from the background urine fluorescence is not a
problem.

For a quantitative description of the fluorescence of ND
in suspensions, parameter F0 was used. It is the ratio of the
integral intensity of fluorescence and integral intensity of the
water Raman valence band [40, 41].

To solve the problemof determination of the concentration
of ND-NV in urine using Raman and fluorescence spectra of
suspensions for all spectra of urine and of suspensions of
ND-NV in water and in urine in he mentioned range of
concentrations of ND-NV (0–0.02 gL�1), parameters F0NV
were calculated (Fig. 1). In this case, the parametersF0NVwere
calculated for integral intensity of fluorescence in the range
from641up to800 nmwhereurinefluorescence is negligible in
order to exclude its influence on the spectrum of ND-NV
fluorescence (Fig. 1).

For diagnostic purposes (e.g., to determine the number
of particles), such a calculation is entirely acceptable. The
obtained concentration dependencies F0NV(С) are shown in
Fig. 2. As one can see in Fig. 2, these dependencies can
be well approximated by linear functions. Due to the way
of calculation of F0NV, the straight lines F0NV(С) for the
samples of urine from various donors are close to each other,
and they even do not differ much from the dependence
F0NV(С) for the suspensions of ND-NV in water. This
provides practically equal accuracy of determination of

Figure 1 Raman and fluorescence spectra of urine, ND-NV
suspensions in water and urine with concentration 0.02 g L�1.
Illustration of calculation of the parameter F0NV.

Figure 2 The dependences of parameter F0NV on the concentra-
tion of ND-NV in urine samples and in water. Root mean square
errors are equal to: 0.053 (black), 0.079 (red), 0.058 (blue).
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concentration of ND-NV in various samples of urine using
the obtained calibration dependencies. As a result of the
calculations, it was determined that the accuracy of the
ND-NV concentration in water and urine using dependen-
cies F0NV(С) was 2.42� 10�4 and 3.06� 10�4 g L�1,
respectively.

One should note that the achievement of such a high
accuracy of determination of ND-NV concentration in water
and in urine using fluorescence and Raman spectra was to a
large extent due to the choice of the excitation wavelength
514.5 nm. In this case, the Raman valence band of OH-
groups, which is the internal benchmark for calculation of
parameters F0, practically does not overlap with the zero-
phonon lines (ZPL) of ND-NV. For example, under laser
excitation by 488 or 532 nm wavelengths, the valence
band of OH-groups significantly overlaps with one of the
two ZPL, making correct calculation of parameters F0

impossible.

3.2 Fluorescence properties of DND in urine The
fluorescence of DND is much weaker than the fluorescence
of ND with NV centers. DNDs have fluorescence at
excitation wavelength 405 nm; at these conditions urine
fluorescence is also significant, and fluorescence spectrum
of urine overlaps with fluorescence spectrum of DND.
Taking into account that DND are much easier and cheaper
to produce and have a better perspective from the point of
view of surface modification than ND with NV centers, the
problem of DND recognition in biotissue by fluorescence
spectra is very urgent.

In Fig. 3, fluorescence and Raman spectra of urine and
DND suspensions in water and urine with the same
concentration 0.2 g L�1 are presented. The band with a
maximum near 464.5 nm corresponds to the valence
vibrations of OH-groups of water. As one can see in
Fig. 3, fluorescence spectra of DND (from 440 to 580 nm)
and urine (from 400 to 700 nm) overlap over a wide spectral

range. At the same time, the spectrum of DND in urine is
significantly different from superposition of fluorescence
spectra of DND and urine. This confirms the existence of
strong nonlinear interactions between ND surfaces and
biomacromolecules. According to literature data [42], the
fluorescence properties of DND are caused by defects on its
surface. That is why the signal of DND fluorescence is very
sensitive to the environment, since fluorescence of DND
can be changed as a result of interaction of DND surface
groups with surrounding molecules. Thus, extraction of the
fluorescence signal of DND from the background fluor-
escence of urine is a very difficult problem.

This problem is complicated by high variability of urine
fluorescence and, therefore, by fluorescence of DND in
urine. In Fig. 4, Raman and fluorescence spectra of diluted
urine from various donors are presented. These spectra are
significantly different by both position of band maximum
(varied between 479 and 510 nm) and by band shape.
Variability of spectra of DND fluorescence in urine can be
demonstrated using calculated quantitative characteristics of
the fluorescence spectra F0. The method of calculation of
F0 is illustrated in Fig. 5.

Parameter F0 and differentialDF0 were calculated for all
Raman and fluorescence spectra of urine and suspensions of
DND in water and urine with DND concentration 0.2 g L�1.
To obtain DF0, the value of the F0 parameter of spectra
of solvent (without DND) was subtracted from the
F0 parameter of DND suspension in water or urine, i.e.,
DF0¼F0suspension� F0solvent. In a rough approximation, one
can consider this differential parameter DF0 to be a measure
of change of fluorescent properties of DND in different
solvents. From a comparison of the values of DF0, obtained
for fluorescent spectra of DND suspensions in water
and urine samples from each of the 15 donors (Fig. 6),
the following conclusions can be made: (i) fluorescence
properties of DND significantly increase in urine in
comparison with water; (ii) high variability of change in

Figure 3 Raman and fluorescence spectra of water, urine, DND
suspensions in water and urine; DND concentration 0.2 g L�1.

Figure 4 Experimental fluorescence spectra of various samples of
diluted urine (without ND).
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fluorescence properties of DND depending on an urine
sample is observed, what confirms once again the existence
of significant nonlinear interactions between DND surface
groups and biomacromolecules.

Significant interactions of DND and urine molecules are
also revealed in the spectra of IR absorption of the studied
samples. In Fig. 7, the IR spectra of evaporated samples of
DND from water, urine, and DND from this urine, are
presented. As one can see, when DND is added to urine, the
intensity of the peak caused by rocking vibrations of NH2

groups (1155 cm�1) decreases, the intensity of the peak near
1460 cm�1 caused by asymmetric valence vibrations C–N in
CN2 increases. Change of the ratio of intensities of in-plane
(3350 cm�1) and out-of-plane (3440 cm�1) vibrations of NH

caused by interactions of DND and urine is also observed in
the spectra. The observed changes in IR spectra of urine and
DND in urine, as well as the fact that DND fluorescence
in urine increases, confirm the hypothesis about surface
nature of DND fluorescence [42].

From the above analysis of the fluorescence properties
of DND in urine, it follows that elaboration of the method of
optical visualization of DND in biotissue, i.e., solution of
the inverse problem of extracting DND fluorescence from
the background of urine autofluorescence requires applica-
tion of adaptive methods of data processing [43], in
particular, application of the technique of artificial neural
networks [32]. Neural network algorithms are able to
overcome the high variability of fluorescence properties
both of nanoparticles and of biotissue in the studied samples,
and also to take into account the significant nonlinear
interactions between them.

4 Application of artificial neural networks for
recognition of DND in human urine As it was
mentioned above (see Section 3.1), elaboration of a method
of optical visualization of DND in biotissue, i.e., solution of
the problem of extraction of DND fluorescence against the
background of autofluorescence of urine, requires applica-
tion of adaptive methods of data processing, in particular, of
artificial neural networks [32].

4.1 Artificial neural networks The architecture of
the artificial neural networks (ANN) used in this study to
solve the described problem, is the most widely known
ANN architecture – the multi-layer perceptron (MLP). A
basic element that is used to construct any MLP is called a
formal neuron. This element has multiple inputs and a single
output. Each input is assigned its own weight coefficient, wj.
A non-linear function F (activation function) is applied to
the weighted sum of the values xj at the inputs of the neuron

Figure 5 Illustration of calculation of F0¼ integral fluorescence/
integral Raman intensity of water valence band.

Δ

Figure 6 Comparison of the values of differential parameters DF0

for fluorescence of water DND suspension and DND suspension
in urine samples of each of the 15 donors (at the concentration
of DND equal to 0.2 g L�1).

Figure 7 Spectra of IR absorption of evaporated samples of DND
(from water), urine and DND evaporated from this urine.
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to form the value y at the output of the neuron:

y ¼ F
XN

j¼0

wjxj; x0 � 1: ð1Þ

A number of identical neurons, which differ only by the
values of their weights, are united in parallel into a layer. An
MLP consists of several layers (Fig. 8); each neuron is
linked to all the neurons of the preceding and the next layers
(the so-called fully connected scheme). The signal
propagates according to Eq. (1) from the inputs of the first
layer to the output of the last one.

The first layer of an MLP is used to introduce data into
the network, so it is called the input layer. The number of
neurons in the input layer corresponds to the number of
features characterizing the processed data sample (e.g., the
number of channels of a spectrum). The neurons of the input
layer are not formal neurons like those described above –

they perform no data processing, they just distribute the
signal from the input of the network to the neurons of the
next layer.

The last layer of an MLP represents the output of the
whole network (e.g., the determined ND concentration), so
it is called the output layer (Fig. 8). If several quantities are
determined simultaneously, there are several neurons in the
output layer.

One or several layers located between the input and the
output layers are called hidden layers, as they are not
directly connected either to the input or to the output of the
network. The quantity of neurons in the hidden layer(s)
determines the general complexity of the MLP.

The value at the output of an MLP depends not only on
the values at its inputs, but also on the weights of all the
neurons (Eq. (1)). That is why the weights have to be
assigned some correct values to provide correct answers of
the network. To achieve that, the network is trained.
Training of a MLP is done by evaluation of answers of the
MLP on the samples from the training data set with known

correct answers, with further adjustment of weights for all
neurons. The procedure of training provides minimization of
the mean error of the MLP over the training set. Usually this
is done by the error backpropagation algorithm [32], which
implements minimization of error by gradient descent in the
space of weights.

In general, one needs three data sets to work with ANN:
a training set used to calculate error and adjust weights
during training, a test set used to prevent network
overtraining (to provide reasonable results on new data),
and an examination set used to evaluate the quality of ANN
training and to estimate the error of determination of the
sought parameters of the solved problem on independent
data.

4.2 Extraction of DND fluorescence against the
background fluorescence spectrum of urine using
ANN When ANN are used to solve inverse problems in
optical spectroscopy, three approaches can be used: “model-
based,” “quasi-model,” “experiment-based” [35]. The
“model-based” approach requires an analytical model of
solution of the direct problem, to compute the data set for
ANN training. In the “quasi-model” approach, a small set of
experimental data is used to construct a parametric “quasi-
model” of input data (spectra); on the base of this “quasi-
model” one can compute spectra for training, test and
examination sets. In both approaches, the opportunity to
compute a large amount of samples provides high
representativity of all sets for work with ANN. However,
in these cases the accuracy of the solution of the inverse
problem significantly depends on how adequate is the
chosen analytical model or the constructed “quasi-model” to
the studied object, and on how correctly the real noise was
taken into account in the experiment.

Within the “experiment-based” approach, the neural
network is trained only on experimental data. Obviously in
this case it is most often impossible to provide high
representativity of all the sets. But this approach has a very
important advantage – when ANN is trained on real
experimental data, the experimental noise and all molecular
interactions in the studied objects are taken into account to a
greater extent.

Obviously, the “model-based” and “quasi-model”
approaches cannot be used for solution of the problem of
extraction of the fluorescence signal of DND against the
fluorescence background of urine, because there still is no
adequate analytical model describing complex non-linear
interactions between molecules of urine and taking into
account the high variability of fluorescence properties of
urine. That is why in this study the “experiment-based”
approach was used.

As it was mentioned above (Section 2.1), in the
experiment, 15 series of Raman and fluorescence spectra of
DND suspensions in urine were obtained. Every series
consisted of spectra of suspensions in the range of DND
concentrations from 0 up to 0.2 g L�1 with increment
0.01 g L�1. To increase stability of the solution of theFigure 8 The scheme of a multi-layer perceptron.
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problem to the model of biological object, samples of urine
from 15 different healthy donors were used. Thus, the total
data array consisted of 315 spectra. This array was used to
form training, test, and examination sets for ANN training.

The whole obtained array of data was divided into
training, test, and examination sets according to the ratio
13:2:1, respectively. The division was performed in two
ways: (i) randomly after “mixing” of spectra from all series
and (ii) in such a way that each series was completely in one
of the three sets (“by whole series”).

The problemwas solved using a perceptron with a single
hidden layer, trained by error backpropagation algo-
rithm [32]. The number of neurons in the hidden layer
was set to 8, 16, or 32. The activation function was logistic
in the hidden layer and linear in the output layer. The
training parameters were the following: learning rate 0.01,
learning moment 0.5, random order of sample presentation,
training was stopped after 1000 training epochs after
minimum error on the test data set.

Table 1 presents exemplary results of application of the
perceptron with different number of neurons in the single
hidden layer to the examination set, for different methods
of division into the sets. As it can be seen from Table 1,
the average error of determination of DND concentration
in urine on the examination set is nearly the same for
both methods of division, and, on the average, it is
6.8� 10�3 g L�1. This value can be used as an estimate of
the detection level of DND in urine.

The best result with minimum error of determination
of concentration was obtained by using perceptron with
eight neurons in the hidden layer, with division into sets
“by whole series”: the mean absolute error (MAE) of
determination of DND concentration was 5.8� 10�3 g L�1.
This method of division also looks more realistic, as for
practical application, each new series should fall completely
into the examination set, in order not to retrain the ANN
each time.

Thus, despite significant overlapping of fluorescence
signals of DND and natural biofluorophores, use of ANN
allows detection and estimation of concentration of particles
of detonation nanodiamonds in biofluid. Such method

is very useful, taking into account that synthesis and
purification of DND are cheap and easily available, and that
creation of nitrogen vacancies in ND requires expensive
equipment and adjusting of conditions of particle pre-
processing.

The obtained values for the error of determination of
concentration of excreted nanodiamonds in urine were
compared to data for rats, available in the literature. The
authors of Ref. [44] made eight ND injections to rats during
4 weeks at 3-day intervals. They injected a water suspension
of NDwith a concentration of 500mgL�1 at the rate of 4mg
of nanoparticles per 1 kg body weight. According to the
results of the studies by the authors of Ref. [45], 90% of the
NDs are accumulated in the lung, spleen, and liver and then,
the remaining NDs are excreted in the urinary tract. Then the
concentration of NDs excreted from rats is 0.1� 0.5¼
0.05 g L�1. The weight of a human is about 100 times larger.
The obtained values for the error of determination of
concentration of excreted nanodiamonds in urine are
3.06� 10�3 g L�1 for ND-NV, and 6.8� 10�2 g L�1 for
DND, thus providing detection of NDs in urine even taking
into account the high fraction of particles remaining in
organs (90%). It should be noted that at the specified
doses, nanodiamonds are not toxic for organs. Thus, the
250–500mgmL�1 doses of injected NDs with 20 and
100 nm size in lung, kidney, colon, and liver human cell
lines revealed no cytotoxic or genotoxic effects [46].
Numerous literature data indicate that with time NDs
are excreted from the organism [47] The results of the
authors [48] have shown that no NDs were found in the
mice’s liver, spleen, and lymphatic node through histopath-
ological and HRTEM observations, even when the mice
were instilled with a much higher dose of 20mg kg�1 NDs.

5 Conclusions In this study, methods of detection
and estimation of the quantitative content of detonation
nanodiamonds and ND with NV-centers in a real biological
object by fluorescence spectra were elaborated. It has been
demonstrated that using the dependencies of the fluores-
cence-derived parameter (F0) on ND-NV concentration in
the suspension, it was possible to determine the concentra-
tion of ND-NV in urine by their fluorescence spectra with
the accuracy of 3.06� 10�4 g L�1.

A proof of principle for recognition of the fluorescence
signal of DND against the background of urine autofluor-
escence with the help of artificial neural networks has been
demonstrated. It has been shown that the elaborated method
allows detection of DND in urine and to determine its
concentration with the accuracy (mean absolute error) of
6.8� 10�3 g L�1 on average.

The advantage of ANN application to the problems of
detection of DND in biotissue/biofluids follows from the
fact that training of neural networks may be performed on
data that takes into account all kinds of interactions of
nanoparticles with biomacromolecules, and with account for
experimental noise of various natures. At the given stage,
this method can be used when DND are injected into the

Table 1 Mean absolute error of the ANN in the examination data
set.

method of division
of the data array

number of
neurons in
the hidden
layer

value of mean
absolute error
(MAE) in the
examination
set (g L�1)

random after mixing 8 0.0077
16 0.0077
32 0.0066

second series as examination set
third and sixth series as test set
All the other series as training set

8 0.0058
16 0.0071
32 0.0075
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skin, surface vessels, blood. One should note that such
application of ANN is very promising in other fields of work
with ND, for example, when excitation of biotissue with ND
is performed by X-ray sources or acoustic methods.
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